Advertisement

Cereal Research Communications

, Volume 44, Issue 4, pp 694–705 | Cite as

Stability Analysis of Wheat Populations and Mixtures Based on the Physical, Compositional and Processing Properties of the Seeds

  • K. Tremmel-Bede
  • P. MikóEmail author
  • M. Megyeri
  • G. Kovács
  • S. Howlett
  • B. Pearce
  • M. Wolfe
  • F. Löschenberger
  • B. Lorentz
  • L. Láng
  • Z. Bedő
  • M. Rakszegi
Article

Abstract

Six cropping populations, three variety mixtures and one diversity population were developed from winter wheat varieties and studied for physical, compositional and end-use quality traits for three years (2011–2013) under different European climatic and management conditions in order to study the stability of these traits resulted by the genetic diversity. The beneficial compositional and nutritional properties of the populations were assessed, while variation and stability of the traits were analysed statistically. No significant differences were found among the populations in low-input and organic management farming systems in the physical, compositional and processing properties, but there was a difference in the stability of these traits. Most of the populations showed higher stability than the control wheat variety, and populations developed earlier had higher stability than those developed later. Furthermore, some populations were found to be especially unstable for some traits at certain sites (mostly at Austrian, Swiss and UK organic sites). Protein content of the populations was high (13.0–14.7%) without significant difference among them, but there was significant variation in their gluten content (28–36%) and arabinoxylan content (14.6–20.3 mg/g). The most outstanding population for both protein and arabinoxylan content was a Hungarian cropping population named ELIT-CCP. It was concluded that the diversity found in the mixtures and CCPs have stabilizing effect on the quality parameters, but a higher stability was observed under low-input than under organic conditions. These results could be beneficial not only for breeders but also for the consumers in the long run.

Keywords

wheat organic stability CCP GGE biplot dietary fibre 

Abbreviations

AX

Arabinoxylan

CCP

Composite cross-population

CV

Coefficient of variation

DF

Dietary fibre

GI

Gluten index

HI

Hardness index

LI

Low input (refers to low input conventional field)

O

Organic (refers to organic field)

TKW

Thousand-kernel weight

TOT

Total

TW

Test weight

WE

Water extractable

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2016_4404694_MOESM1_ESM.pdf (3 mb)
Stability Analysis of Wheat Populations and Mixtures Based on the Physical, Compositional and Processing Properties of the Seeds

References

  1. Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environ. 74:19–31.CrossRefGoogle Scholar
  2. Cardinale, B.J., Matulich, K.L., Hooper, D.U., Byrnes, J.E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M.I., Gonzales, A. 2011. The functional role of producer diversity in ecosystems. Am. J. Bot. 98:572–592.CrossRefGoogle Scholar
  3. Carson, G.R., Edwards, N.M. 2009. Criteria of wheat and flour quality. In: Khan, K., Shewry, P.R. (eds), Wheat: Chemistry and Technology. AACC International, Inc. St. Paul, MN, USA. pp. 97–118.CrossRefGoogle Scholar
  4. Ceccarelli, S., Grando, S., Baum, M. 2007. Participatory plant breeding in water-limited environments. Exp. Agric. 43:411–435.CrossRefGoogle Scholar
  5. Courtin, C.M., Delcour, J.A. 2002. Arabinoxylans and endoxylanases in wheat flour breadmaking. J. Cereal Sci. 35:225–243.CrossRefGoogle Scholar
  6. Döring, T.F., Annicchiarico, P., Clarke, S., Haigh, Z., Jones, H.E., Pearce, H., Snape, J., Zhan, J., Wolfe, M.S. 2015. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crops Res. 183:235–245.CrossRefGoogle Scholar
  7. Douglas, S.G. 1981. A rapid method for the determination of pentosans in wheat flour. Food Chem. 7:139–145.CrossRefGoogle Scholar
  8. Dubin, H.J., Wolfe, M.S. 1994. Comparative behaviour of three wheat cultivars and their mixtures in India, Nepal and Pakistan. Field Crops Res. 39:71–83.CrossRefGoogle Scholar
  9. Finckh, M.R. 2008. Integration of breeding and technology into diversification strategies for disease control in modern agriculture. Eur. J. Plant Pathol. 121:399–409.CrossRefGoogle Scholar
  10. Frederix, S.A., Van Hoeymissen, K., Courtin, C.M., Delcour, J.A. 2004. Water-extractable and water unextractable arabinoxylans affect gluten agglomeration behaviour during wheat flour gluten-starch separation. J. of Agric. and Food Chem. 52:7950–7956.CrossRefGoogle Scholar
  11. Frison, E.A., Cherfas, J., Hodgkin, T. 2011. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253.CrossRefGoogle Scholar
  12. Gebruers, K., Dornez, E., Boros, D., Fraś, A., Dynkowska, W., Bedo, Z., Rakszegi, M., Delcour, J.A., Courtin, C.M. 2008. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen. J. of Agric. and Food Chem. 56:9740–9749.CrossRefGoogle Scholar
  13. Gebruers, K., Dornez, E., Bedo, Z., Rakszegi, M., Fras, A., Boros, D., Courtin, C.M., Delcour, J.A. 2010. Environment and genotype effect on the content of dietary fibre and its components in wheat in the HEALTHGRAIN diversity screen. J. of Agric. and Food Chem. 58:9353–9361.CrossRefGoogle Scholar
  14. Hajjar, R., Jarvis, D.I., Gemmill-Herren, B. 2008. The utility of crop genetic diversity in maintaining ecosystem services. Agric., Ecosystems and Environ. 123:261–270.CrossRefGoogle Scholar
  15. Heal, G., Walker, B., Levin, S., Arrow, K., Dasgupta, P., Daily, G., Ehrlich, P. 2004. Genetic diversity and interdependent crop choices in agriculture. Resource and Energy Economics 26:175–184.CrossRefGoogle Scholar
  16. Lammerts van Bueren, E.T., Jones, S.S., Tamm, L., Murphy, K.M., Myers, J.R., Leifert, C., Messmer, M.M. 2010. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli examples: A review. NJAS Wageningen J. of Life Sci. 58:193–205.CrossRefGoogle Scholar
  17. Lammerts van Bueren, E.T., Myers, J. 2012. Organic Crop Breeding. First Ed. John Wiley and Sons Inc. https://doi.org/onlinelibrary.wiley.com/doi/10.1002/9781119945932.fmatter/pdf
  18. Lewis, S.J., Heaton, K.W. 1999. The metabolic consequences of slow colonic transit. Am. J. Gastroenterol. 94:2010–2016.CrossRefGoogle Scholar
  19. Mikó, P., Löschenberger, F., Hiltbrunner, J., Aebi, R., Megyeri, M., Kovács, G., Molnár-Láng, M., Vida, Gy., Rakszegi, M. 2014. Comparison of bread wheat varieties with different breeding origin under organic and low input management. Euphytica 199:69–80.CrossRefGoogle Scholar
  20. Moore, M.A., Beom Park, C., Tsuda, H. 1998. Soluble and insoluble fibre influences on cancer development. Crit. Rev. Oncol. Hematol. 27:229–242.CrossRefGoogle Scholar
  21. Mundt, C.C. 2002. Performance of wheat cultivars and cultivar mixtures in the presence of Cephalosporium stripe. Crop Protection 21:93–99.CrossRefGoogle Scholar
  22. Murphy, K., Lammer, D., Lyon, S., Carter, B., Jones, S.S. 2005. Breeding for organic and low-input farming systems: An evolutionary-participatory breeding method for in bred cereal grains. Renewable Agric. and Food Systems 20:48–55.CrossRefGoogle Scholar
  23. Newton, A.C., Begg, G.S., Swanston, J.S. 2009. Deployment of diversity for enhanced crop function. Ann. Appl. Biol. 154:309–322.CrossRefGoogle Scholar
  24. Østergård, H., Finckh, M.R., Fontaine, L., Goldringer, I., Hoad, S.P., Kristensen, K., Lammerts van Bueren, E.T., Mascher, F., Munk, L., Wolfe, M.S. 2009. Time for a shift in crop production: Embracing complexity through diversity at all levels. J. of Agric. and Food Information 89:1439–1445.CrossRefGoogle Scholar
  25. Phillips, S.L., Wolfe, M.S. 2005. Evolutionary plant breeding for low-input systems. J. of Agric. Sci. 143:245–254.CrossRefGoogle Scholar
  26. Rakszegi, M., Mikó, P., Löschenberger, F., Hiltbrunner, J., Aebi, R., Knapp, S., Bede, K., Megyeri, M., Kovács, G., Molnár L.M., Vida, Gy., Láng, L., Bedő, Z. 2016. Comparison of quality parameters of wheat varieties with different breeding origin under organic and conventional conditions. J. of Cereal Sci. 69:297–305.CrossRefGoogle Scholar
  27. Suneson, C.A. 1956. An evolutionary plant breeding method. Agronomy J. 48:188–191.CrossRefGoogle Scholar
  28. Ward, J.L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A.M., Nyström, L., Andersson, A.A.M., Aman, P., Boros, D., Rakszegi, M., Bedo, Z., Shewry, P.R. 2008. The HEALTHGRAIN Cereal Diversity Screen: concept, results, and prospects. J. of Agric. and Food Chem. 56:9699–9709.CrossRefGoogle Scholar
  29. Wolfe, M.S., Baresel, J.P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Löschenberger, F., Miedaner, T., Østergård, H., Lammerts van Bueren, E.T. 2008. Developments in breeding cereals for organic agriculture. Euphytica 163:323–346.CrossRefGoogle Scholar
  30. Yan, W., Tinker, N.A. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canad. J. of Plant Sci. 86:623–645.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

Authors and Affiliations

  • K. Tremmel-Bede
    • 1
  • P. Mikó
    • 1
    Email author
  • M. Megyeri
    • 1
  • G. Kovács
    • 1
  • S. Howlett
    • 2
  • B. Pearce
    • 2
  • M. Wolfe
    • 2
  • F. Löschenberger
    • 3
  • B. Lorentz
    • 4
  • L. Láng
    • 1
  • Z. Bedő
    • 1
  • M. Rakszegi
    • 1
  1. 1.Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary
  2. 2.The Organic Research Centre, Elm FarmHamstead MarshallNewburyUK
  3. 3.Saatzucht Donau GmbH & Co KGProbstdorfAustria
  4. 4.INRA - UMR Diversité et Génome des Plantes Cultivées - Domaine de MelgueilMauguioFrance

Personalised recommendations