Polyamine Plays Key Role in Different Osmotic Stress Responses of Wheat-Rye 1BL/1RS Translocation Lines

Abstract

It is well demonstrated that wheat-rye 1BL/1RS translocated chromosome leads to some valuable novel traits such as disease resistance, high yield and functional stay-green after anthesis. To understand the physiological mechanism of 1BL/1RS translocation responsible for osmotic stress, two wheat cultivars, CN12 and CN17, carrying the translocated chromosome and MY11 without the translocated chromosome were employed in the study. During 5-day osmotic stress, fresh weight inhibition, chlorophyll content, soluble protein content, MDA concentration, antioxidant enzymes activity and free polyamines content were examined. CN12 and CN17, especially cultivar CN17, registered greater biomass and minor oxidative damage compared with their wheat parent. Meanwhile, the concentration of Spd and Spm in CN17 was significantly higher than the others. In addition, we found a positive correlation of fresh weight inhibition (FWI) and Put concentration, and a negative one with the parameters (Spd + Spm): Put ratio, indicating the importance of higher polyamine (Spd and Spm) accumulation on the adaptation to osmotic stress. Therefore, we proposed that the accumulation of higher polyamines (Spd and Spm) should play an important role on the adaptation of 1BL/1RS translocation lines to osmotic stress and might be important factors for the origin of novel traits introduced by 1BL/1RS.

References

  1. Alcazar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A.F. 2010. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249.

    CAS  Article  Google Scholar 

  2. Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601–639.

    CAS  Article  Google Scholar 

  3. Bohnert, H.J., Nelson, D.E., Jensen, R.G. 1995. Adaptations to environmental stresses. Plant Cell 7:1099–1111.

    CAS  Article  Google Scholar 

  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    CAS  Article  Google Scholar 

  5. Capell, T., Bassie, L., Christou, P. 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl Acad. Sci. USA 101:9909–9914.

    CAS  Article  Google Scholar 

  6. Davies, M.J. 2003. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305:761–770.

    CAS  Article  Google Scholar 

  7. Dhanda, S.S., Sethi, G.S., Behl, R.K. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J. of Agron. and Crop Sci. 190:6–12.

    Article  Google Scholar 

  8. Dhindsa, R.S., Matowe, W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32:79–91.

    CAS  Article  Google Scholar 

  9. Esfandiari, E.O., Shakiba, M.R., Mahboob, S.A., Alyari, H., Toorchi, M. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J. of Food Agric. and Environ. 5:149–153.

    CAS  Google Scholar 

  10. Flores, H.E., Galston, A.W. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69:701–706.

    CAS  Article  Google Scholar 

  11. Friebe, B., Jiang, J., Raupp, W., McIntosh, R., Gill, B. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.

    Google Scholar 

  12. Galston, A.W., Sawhney, R.K. 1990. Polyamines in plant physiology. Plant Physiol. 94:406–410.

    CAS  Article  Google Scholar 

  13. Giannopolitis, C.N., Ries, S.K. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol. 59:315–318.

    CAS  PubMed  Google Scholar 

  14. Groppa, M.D., Benavides, M.P. 2008. Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45.

    CAS  Article  Google Scholar 

  15. Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611.

    CAS  Article  Google Scholar 

  16. Kovács, Z., Simon-Sarkadi, L., Szűcs, A., Kocsy, G. 2010. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631.

    Article  Google Scholar 

  17. Kusano, T., Berberich, T., Tateda, C., Takahashi, Y. 2008. Polyamines: essential factors for growth and survival. Planta 228:367–381.

    CAS  Article  Google Scholar 

  18. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382.

    CAS  Article  Google Scholar 

  19. Luo, P.G., Ren, Z.L., Wu, X.H., Zhang, H.Y., Zhang, H.Q., Feng, J.A. 2006. Structural and biochemical mechanism responsible for the stay-green phenotype in common wheat. Chinese Sci. Bulletin 51:2595–2603.

    CAS  Article  Google Scholar 

  20. Luo, P.G., Deng, K.J., Hu, X.Y., Li, L.Q., Li, X., Chen, J.B., Zhang, H.Y., Tang, Z.X., Zhang, Y., Sun, Q.X., Tan, F.Q., Ren, Z.L. 2013. Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional ‘stay-green’ trait in wheat. Plant Cell Environ. 36:683–696.

    CAS  Article  Google Scholar 

  21. Ren, T.H., Yang, Z.J., Yan, B.J., Zhang, H.Q., Fu, S.L., Ren, Z.L. 2009. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213.

    Article  Google Scholar 

  22. Ren, T.H., Chen, F., Zhang, H.Q., Yan, B., Ren, Z.L. 2011. Application of 1RS.1BL translocation in the breeding of ‘‘Chuangnong’’ series wheat cultivars. J. Triticeae Crops 31:430–436.

    CAS  Google Scholar 

  23. Sairam, R.K., Srivastava, G.C., Saxena, D.C. 2000. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum 43:245–251.

    CAS  Article  Google Scholar 

  24. Sánchez-Rodríguez, E., Rubio-Wilhelmi, M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 178:30–40.

    Article  Google Scholar 

  25. Shao, H.B., Chu, L.Y., Wu, G., Zhang, J.H., Lu, Z.H., Hu, Y.C. 2007. Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B-Biointerfaces 54:143–149.

    CAS  Article  Google Scholar 

  26. Soltis, P.S., Soltis, D.E. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60:561–588.

    CAS  Article  Google Scholar 

  27. Sun, B.Y., Kan, S.H., Zhang, Y.Z., Deng, S.H., Wu, J., Yuan, H., Qi, H., Yang, G., Li, L., Zhang, X.H., Xiao, H., Wang, Y.J., Peng, H., Li, Y.W. 2010. Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. J. of Hazardous Materials 183:833–838.

    CAS  Article  Google Scholar 

  28. Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., Sano, H. 2003. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol. 131:454–462.

    CAS  Article  Google Scholar 

  29. Tang, Z.X., Fu, S.L., Ren, Z.L., Zhang, H.Q., Yang, Z.J., Yan, B.J. 2009. Characterization of three wheat cultivars possessing new 1BL.1RS wheat-rye translocations. Plant Breeding 128:524–527.

    Article  Google Scholar 

  30. Zhang, H.Y., Jiang, Y.N., He, Z.Y., Ma, M. 2005. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol. 162:977–984.

    CAS  Article  Google Scholar 

  31. Zhang, J.X., Kirkham, M.B. 1994. Drought-stress-induced changes in activities of superoxide-dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35:785–791.

    CAS  Article  Google Scholar 

  32. Zhang, Y., Liu, Z.H., Liu, C., Yang, Z.J., Deng, K.J., Peng, J.H., Zhou, J.P., Li, G.R., Tang, Z.X., Ren, Z. L. 2008. Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Chinese Sci. Bulletin 53:58–69.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Additional information

Communicated by M. Molnár-Láng

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, K.J., Zhou, J.P., Wu, X.H. et al. Polyamine Plays Key Role in Different Osmotic Stress Responses of Wheat-Rye 1BL/1RS Translocation Lines. CEREAL RESEARCH COMMUNICATIONS 44, 549–560 (2016). https://doi.org/10.1556/0806.44.2016.025

Download citation

Keywords

  • wheat
  • 1BL/1RS translocation lines
  • osmotic stress
  • polyamine
  • physiological parameters