Advertisement

Cereal Research Communications

, Volume 44, Issue 2, pp 263–271 | Cite as

Virulence of Moroccan Pyrenophora teres f. teres Revealed by International Differential Barley Genotypes

  • K. Taibi
  • F. Bentata
  • S. Rehman
  • M. Labhilili
  • A. El Aissami
  • R. P. S. Verma
  • S. GyawaliEmail author
Open Access
Pathology
  • 3 Downloads

Abstract

Pyrenophora teres f. teres (Ptt), causing net blotch in barley, is an important and frequently isolated leaf pathogen across the globe. The virulence spectrum of Ptt from North Africa including Morocco is poorly understood. Sixteen barley genotypes were challenged, at seedling stage, with 15 Ptt isolates that were collected from different agroecological zones of Morocco. The experiment was conducted in a factorial arrangement of treatments in a randomized complete block design with three replicates. The ANOVA revealed highly significant (P <0.001) effects of genotype (G), isolate (I) and G×I interaction explaining 23.2, 62.5, and 13.9% of the variation, respectively. Therefore, the current study revealed highly diverse virulence pattern of Moroccan isolates. Furthermore, the results indicated that minor virulence of Ptt isolates dominated over virulence interaction. In addition, Taffa (6-rowed) and Aglou (2 rowed), had the highest level of resistance to Ptt, while Coast and Rabat071 were the most susceptible genotypes. Pt2, Pt7, Pt8 and Pt4 were being the most virulent isolates, while Pt10 and Pt11 were the least virulent isolates. The emergence of the new Ptt pathotypes, which were highly virulent to durable resistance in Rabat071 posed a risk of breaking down the currently deployed resistance to net blotch in Morocco. A careful evaluation and selection of Ptt isolates based on minor virulence pattern to barley genotypes is essential for successful barley breeding program for resistance to net blotch in Morocco.

Keywords

barley GGE biplot net blotch Pyrenophora teres virulence 

Supplementary material

42976_2016_4402263_MOESM1_ESM.pdf (165 kb)
Virulence of Moroccan Pyrenophora teres f. teres Revealed by International Differential Barley Genotypes

References

  1. Afanasenko, O., Mironenko, N., Filatova, O., Kopahnke, D., Krämer, I., Ordon, F. 2007. Genetics of host-pathogen interactions in the Pyrenophora teres f. teres (net form) – barley (Hordeum vulgare) pathosystem. Eur. J. Plant Pathol. 117:267–280.CrossRefGoogle Scholar
  2. Afanasenko, O.S., Jalli, M., Pinnschmidt, H.O., Filatova, O., Platz, G.J. 2009. Development of an international standard set of barley differential genotypes for Pyrenophora teres f. teres. Plant Pathol. 58:665–676.CrossRefGoogle Scholar
  3. Bentata, F. 2015. Etude dynamique, moleculaire et Lutte biologique de la population Moracaine de la rayure reticulee de l’orge Pyrenophora teres f. teres (Study of the dynamics and molecular of a Moroccan population of net blotch (Pyrenophora teres f. teres) and utilisation of biocontrol as an alternative method). PhD thesis. Moulay Ismail University, Meknes-Morocco. (in French)Google Scholar
  4. Bockelman, H.E., Sharp, E.L., Bjarko, M.E. 1983. Isolates of Pyrenophora teres from Montana and the mediterranean region that produce spot-type lesions on barley. Plant Dis. 67:696–697.CrossRefGoogle Scholar
  5. Bouajila, A., Zoghlami, N., Ahmed, M.A., Baum, M., Nazari, K. 2012. Pathogenicity spectra and screening for resistance in barley against Tunisian Pyrenophora teres f. teres. Plant Dis. 96:1569–1575.CrossRefGoogle Scholar
  6. Bouajila, A., Zoghlami, N., Murad, S., Baum, M., Ghorbel, A., Nazari, K. 2013. Genetic differentiation in Pyrenophora teres f. teres populations from Syria and Tunisia as assessed by AFLP markers. Lett. Appl. Microbiol. 56:389–400.CrossRefGoogle Scholar
  7. Boulif, M. 1975. Contribution à l’étude des helminthosporioses de l’orge au Maroc (Contribution to the study of helminthosporiums of barley in Morocco). MSc. Thesis. IAV Hassan II. 119 p. (in French)Google Scholar
  8. Cromey, M.G., Parkes, R.A. 2003. Pathogenic variation in Drechslera teres in New Zealand. New Zealand Plant Protection 56:251–256.CrossRefGoogle Scholar
  9. Douiyssi, A., Rasmusson, D.C., Roelfs, A.P. 1998. Responses of barley cultivars and lines to isolates of Pyrenophora teres. Plant Dis. 82:316–321.CrossRefGoogle Scholar
  10. FAOSTSAT 2013. Food and Agriculture Organization of the United Nations, Statistics Division. Barley growing area and yield. Rome, Italy. http://faostat3.fao.org/browse/Q/QC/E [last accessed June 20 2015].Google Scholar
  11. Ghazvini, H., Tekauz, A. 2008. Host-pathogen interactions among barley genotypes and Bipolaris sorokiniana isolates. Plant Dis. 92:225–233.CrossRefGoogle Scholar
  12. Gupta, S., Loughman, R. 2001. Current virulence of Pyrenophora teres on barley in Western Australia. Plant Dis. 85:960–966.CrossRefGoogle Scholar
  13. Harrabi, M., Kamel, A. 1990. Virulence spectrum to barley in some isolates of Pyrenophora teres from the Mediterranean region. Plant Dis. 74:230–232.CrossRefGoogle Scholar
  14. Jebbouj, R., El Yousfi, B. 2010. An integrated multivariate approach to net blotch of barley: Virulence quantification, pathotyping and a breeding strategy for disease resistance. Eur. J. Plant Pathol. 127:521–544.CrossRefGoogle Scholar
  15. Jonsson, R., Bryngelsson, T., Gustafsson, M. 1997. Virulence studies of Swedish net blotch isolates (Drechslera teres) and identification of resistant barley lines. Euphytica 94:209–218.CrossRefGoogle Scholar
  16. Khan, T.N. 1982. Changes in the pathogenicity of Drechslera teres relating to changes in barley cultivars grown in Western-Australia. Plant Dis. 66:655–656.CrossRefGoogle Scholar
  17. Liu, Z.H., Zhong, S., Stasko, A.K., Edwards, M.C., Friesen, T.L. 2012. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Phytopathol. 102:539–546.CrossRefGoogle Scholar
  18. Manninen, O.M., Jalli, M., Kalendar, R., Schulman, A., Afanasenko, O., Robinson, J. 2006. Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571.CrossRefGoogle Scholar
  19. Mathre, D.E. 1982. Compendium of Barley Diseases. Am. Phytopathol. Soc. St. Paul, Minnesota, USA.Google Scholar
  20. McDonald, B., Linde, C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180.CrossRefGoogle Scholar
  21. Payne, R.W. 2013. The Guide to the GenStat ® Command Language (Release 16). Part 2: Statistics. Lawes Agricultural Trust, Rothamsted Experimental Station. Harpenden, Herts, UK.Google Scholar
  22. Rau, D., Rodriguez, M., Murgia, M.L., Balmas, V., Bitocchi, E., Bellucci, E., Nanni, L., Attene, G., Papa, R. 2015. Co-evolution in a landrace metapopulation: two closely related pathogens interacting with the same host can lead to different adaptive outcomes. Science Report 5:12834; doi: 10.1038/srep12834.Google Scholar
  23. Robinson, J., Jalli, M. 1996. Diversity among Finnish net blotch isolates and resistance in barley. Euphytica 92:81–87.CrossRefGoogle Scholar
  24. Smedegard-Petersen, V. 1972. The perithecial and pycnidial stages of Pyrenophora teres and P. graminea in Denmark. Friesia 10:61–85.Google Scholar
  25. Tekauz, A. 1985. A numerical scale to classify reactions of barley to Pyrenophora teres. Can. J. Plant Pathol. 7:181–183.CrossRefGoogle Scholar
  26. Tuohy, J.M., Jalli, M., Cooke, B.M., O’ Sullivan, E. 2006. Pathogenic variation in populations of Drechslera teres f. teres and D. teres f. maculata and differences in host cultivar responses. Eur. J. Plant Pathol. 116:177–185.CrossRefGoogle Scholar
  27. Yan, W., Falk, D.E. 2002. Biplot analysis of host-by-pathogen data. Plant Dis. 86:1396–1401.CrossRefGoogle Scholar
  28. Yousfi, B.E., Ezzahiri, B. 2001. Net blotch in semi arid regions of Morocco. I. Epidemiology. Field Crop. Res. 73:35–46.CrossRefGoogle Scholar
  29. Yousfi, B.E., Ezzahiri, B. 2002. Net blotch in semi-arid regions of Morocco II. Field Crop. Res. 73:81–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • K. Taibi
    • 1
  • F. Bentata
    • 2
  • S. Rehman
    • 3
  • M. Labhilili
    • 2
  • A. El Aissami
    • 1
  • R. P. S. Verma
    • 3
  • S. Gyawali
    • 3
    Email author
  1. 1.Laboratory of Botany, Mycology and Environment, Department of Biology, Faculty of SciencesUniversity Mohammed V-AgdalRabatMorocco
  2. 2.ĽInstitut National de la Recherche Agronomique-Maroc (INRA-M)INRA Avenue Ennasr RabatRabatMorocco
  3. 3.Biodiversity Integrated Gene Management Program (BIGM)International Center for Agricultural Research in Dry Areas (ICARDA)RabatMorocco

Personalised recommendations