Advertisement

Cereal Research Communications

, Volume 44, Issue 3, pp 490–500 | Cite as

The Effect of Light Intensity on the Production of Oat (Avena sativa L.) Doubled Haploids through Oat × Maize Crosses

  • E. SkrzypekEmail author
  • M. Warchoł
  • I. Czyczyło-Mysza
  • I. Marcińska
  • A. Nowakowska
  • K. Dziurka
  • K. Juzoń
  • A. Noga
Open Access
Breeding

Abstract

Oat haploid embryos were obtained by wide crossing with maize. The effect of light intensity during the growing period of donor plants (450 and 800 μmol m−2 s−1) and in vitro cultures (20, 40, 70 and 110 μmol m−2 s−1) was examined for the induction and development of oat DH lines. Oat florets (26008) from 32 genotypes were pollinated with maize and treated with 2,4-dichlorophenoxyacetic acid. All the tested genotypes formed more haploid embryos when donor plants were grown in a greenhouse (9.4%) compared to a growth chamber (6.1%). The light intensity of 110 μmol m−2 s−1 during in vitro culture resulted in the highest percentage of embryo germination (38.9%), conversion into plants (36.4%) and DH line production (9.2%) when compared with lower light intensities (20, 40 and 70 μmol m−2 s−1). The results show that the growth conditions of the donor plant and light intensity during in vitro culture can affect the development of haploid embryos. This fact may have an impact on oat breeding programs using oat × maize crosses.

Keywords

embryos germination wide crossing DH lines 

Notes

Acknowledgement

The research was funded by the Ministry of Agriculture and Rural Development, grant No HORhn-801-4/12.

Supplementary material

42976_2016_4403490_MOESM1_ESM.pdf (196 kb)
The Effect of Light Intensity on the Production of Oat (Avena sativa L.) Doubled Haploids through Oat × Maize Crosses

References

  1. Afreen, F., Zobayed, S.M.A., Kozai, T. 2002. Photoautotrophic culture of Coffea arabusta somatic embryos: Photosynthetic ability and growth of different stage embryos. Ann. Bot. 90:11–19.CrossRefGoogle Scholar
  2. Campbell, A.W., Griffin, W.B., Conner, A.J., Rowarth, J.S., Burritt, D.J. 1998. The effects of temperature and light intensity on embryo numbers in wheat doubled haploid production through wheat × maize crosses. Ann. Bot. 82:29–33.CrossRefGoogle Scholar
  3. Campbell, A.W., Griffin, W.B., Burritt, D.J., Conner, A.J. 2001. The importance of light intensity for pollen tube growth and embryo survival in wheat × maize crosses. Ann. Bot. 87:517–522.CrossRefGoogle Scholar
  4. Chen, M., Chory, J., Fankhauser, Ch. 2004. Light signal transduction in higher plants. Annu. Rev. Genet. 38:87–117.CrossRefGoogle Scholar
  5. Germana, M.A. 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 30:839–857.CrossRefGoogle Scholar
  6. Han, Y.J., Song, P.S., Kim, J.I. 2007. Phytochrome-mediated photomorphogenesis in plants. J. Plant Biol. 50:230–240.CrossRefGoogle Scholar
  7. Hoagland, D.R., Arnon, D.I. 1938. A water culture method for growing plants without soil. Circ. Univ. Calif, Agric. Exp. Stn. No. 347.Google Scholar
  8. Ishii, T., Tanaka, H., Eltayeb, A.E., Tsujimoto, H. 2013. Wide hybridization between oat and pearl millet belonging to different subfamilies of Poaceae. Plant Reprod. 26:25–32.CrossRefGoogle Scholar
  9. Kiviharju, E. 2009. Anther culture derived double haploids in oat. In: Touraev, A. et al. (eds), Advances in Haploid Production in Higher Plants. Springer Science+Business Media B.V., Berlin, Germany. pp. 171–178.Google Scholar
  10. Kiviharju, E., Moisander, S., Laurila, J. 2005. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tiss. Org. Cult. 81:1–9.CrossRefGoogle Scholar
  11. Marcińska, I., Nowakowska, A., Skrzypek, E., Czyczyło-Mysza, I. 2013. Production of doubled haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Central Eur. J. of Biol. 8:306–313.Google Scholar
  12. Murashige, T., Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473–497.CrossRefGoogle Scholar
  13. Nowakowska, A., Skrzypek, E., Marcińska, I., Czyczyło-Mysza, I., Dziurka, K., Juzoń, K., Cyganek, K., Warchoł, M. 2015. Application of chosen factors in the wide crossing method for oat double haploids production. Open Life Sci. 10:112–118.Google Scholar
  14. Rines, H.W. 2003. Oat haploids from wide hybridization. In: Małuszyński, M. et al. (eds), Double Haploid Production in Crop Plants. Kluwer Academic Publishers. Dordrecht, The Netherlands, pp. 155–159.Google Scholar
  15. Rubtsova, M., Gnad, H., Melzer, M., Weyen, J., Gils, M. 2013. The auxins centrophenoxine and 2,4-D differ in their effects on non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnol. Rep. 7:247–255.CrossRefGoogle Scholar
  16. Sidhu, P.K., Davies, P.A. 2009. Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep. 28:571–577.CrossRefGoogle Scholar
  17. Sidhu, P.K., Howes, N.K., Aung, T., Zwer, P.K., Davies, P.A. 2006. Factors affecting haploid production following oat × maize hybridization. Plant Breeding 125:1–6.CrossRefGoogle Scholar
  18. Wang, X.Z., Hu, H. 1984. The effect of potato II medium for 279 triticale anther culture. Plant Sci. Lett. 36:237–239.CrossRefGoogle Scholar
  19. Warchoł, M., Skrzypek, E., Nowakowska, A., Marcińska, I., Czyczyło-Mysza, I., Dziurka, K., Juzoń, K., Cyganek, K. 2016. The effect of auxin and genotype on the production of Avena sativa L. doubled haploid lines. Plant Growth Regul. 78:155–165.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Skrzypek
    • 1
    Email author
  • M. Warchoł
    • 1
  • I. Czyczyło-Mysza
    • 1
  • I. Marcińska
    • 1
  • A. Nowakowska
    • 1
  • K. Dziurka
    • 1
  • K. Juzoń
    • 1
  • A. Noga
    • 1
  1. 1.Department of BiotechnologyThe Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKrakówPoland

Personalised recommendations