Cereal Research Communications

, Volume 44, Issue 2, pp 251–262 | Cite as

Occurrence of Polymyxa graminis Ribotypes in Germany and Their Association with Different Host Plants and Viruses

  • A. ZieglerEmail author
  • V. Fomitcheva
  • A. N. Zakri
  • U. Kastirr


The plasmodiophorid Polymyxa graminis transmits plant viruses to cereal crops such as wheat, rye, barley and triticale. Soil samples from different locations and cereal host plants were analyzed for the presence of P. graminis ribotypes I and II, and tested for the occurrence of soil-borne viruses. P. graminis sequences mainly from fields in Germany used for virus resistance trials, but also from a site each in Poland and Denmark were obtained and deposited in the European Nucleotide Archive. The interactions between the components of the pathogen complex — vector ribotype and virus — and the host are discussed.


P. graminis f. sp. temperata P. graminis f. sp. tepida ribotypes I and II soilborne viruses SBCMV SBWMV WSSMV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge funding by the Federal Ministry of Food and Agriculture through the FNR (Fachagentur Nachwachsende Rohstoffe e.V.; FKZ: 22019311). They wish to thank K. Klingebeil and V. Papke for excellent technical assistance.


  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.CrossRefGoogle Scholar
  2. Anonymous 2007. The first report of Polymyxa graminis Led. in Northern Syria. Arab and Near East Plant Protection Newsletter 45:39.Google Scholar
  3. Bornemann, K., Varrelmann, M. 2011. Analysis of the resistance-breaking ability of different Beet necrotic yellow vein virus isolates loaded into a single Polymyxa betae population in soil. Phytopathol. 101:718–724.CrossRefGoogle Scholar
  4. Braselton, J.P. 1995. Current status of the plasmodiophorids. Crit. Rev. Microbiol. 21:263–265.CrossRefGoogle Scholar
  5. Bulman, S.R., Kühn, S.F., Marshall, J.W., Schnepf, E. 2001. A phylogenetic analysis of the SSU rRNA from members of the plasmodiophorida and phagomyxida. Protist. 152:43–51.CrossRefGoogle Scholar
  6. Bulman, S.R., Braselton, J.P. 2014. Rhizaria: Phytomyxea. In: Mc Laughlin, D.J., Spatafora, J.W. (eds), The Mycota VII, 2nd ed. Systematics and Evolution, Part A. Springer-Verlag. Berlin-Heidelberg, Germany. pp. 99–112.Google Scholar
  7. Cox, B.A., Luo, H., Jones, R.A.C. 2014. Polymyxa graminis isolates from Australia: Identification in wheat roots and soil, molecular characterization, and wide genetic diversity. Plant Dis. 98:1567–1575.CrossRefGoogle Scholar
  8. Dieryck, B., Weyns, J., Doucet, D., Bragard, C., Legreve, A. 2011. Acquisition and transmission of peanut clump virus by Polymyxa graminis on cereal species. Phytopathol. 101:1149–1158.CrossRefGoogle Scholar
  9. Erkan, E., Yilmaz, N.D.K. 2009. Determination of virus diseases in wheat growing areas of Samsun province. Anadolu J. of Agric. Sci. 24:67–75.Google Scholar
  10. Fomitcheva, V., Kastirr, U., Habekuss, A., Kühne, T. 2008. Diagnostic multiplex RT-PCR analysis for the detection of soil-borne mosaic viruses and their natural vector Polymyxa graminis. In: Rush, C.M., Proc. 7th symp. of the international working group on plant viruses with fungal vectors, pp. 43–48.Google Scholar
  11. Gau, R.D., Merz, U., Falloon, R.E., Brunner, P.C. 2013. Global genetics and invasion history of the potato powdery scab pathogen, Spongospora subterranea f. sp. subterranea. PLOS ONE 8:e67944.Google Scholar
  12. Kanyuka, K., Ward, E., Adams, M.J. 2003. Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol. Plant Pathol. 4:393–406.CrossRefGoogle Scholar
  13. Kastirr, U., Widera, A. 1988. Erste Ergebnisse zum Vorkommen der Vektoren des Gerstengelbmosaik-Virus und Rübenwurzelbärtigkeits-Virus in der DDR und deren Vermehrung an ihren Wirtspflanzen (Occurrence of the vectors of barley yellow mosaic virus and beet necrotic yellow vein virus in the German Democratic Republic and multiplication on their host plants-1st results). Arch. Phytopathol. Plant Prot. 24:93–101. (in German)Google Scholar
  14. Kendall, T.L., Langenberg, W.G., Lommel, S.A. 1988. Molecular characterization of Sorghum chlorotic spot virus, a proposed furovirus. J. Gen. Virol. 69:2335–2345.CrossRefGoogle Scholar
  15. Ketta, H., Zouhar, M., Rysanek, P. 2011. First report of Polymyxa graminis f. sp. temperata, a vector of soil-borne cereal viruses in the Czech Republic. Plant Dis. 95:353.Google Scholar
  16. Kühne, T. 2009. Soil-borne viruses affecting cereals – known for long but still a threat. Virus Res. 141:174–183.CrossRefGoogle Scholar
  17. Kwaśna, H., Bateman, G.L., Ward, E. 2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Appl. Soil Ecol. 40:44–56.CrossRefGoogle Scholar
  18. Ledingham, G.A. 1939. Studies on Polymyxa graminis, n. gen. n. sp., a plasmodiophoraceous root parasite of wheat. Can. J. Res. C. 17:38–51.Google Scholar
  19. Legreve, A., Delfosse, P., Maraite, H. 2002. Phylogenetic analysis of Polymyxa species based on nuclear 5.8S and internal transcribed spacers ribosomal DNA sequences. Mycol. Res. 106:138–147.CrossRefGoogle Scholar
  20. Lozano, I., Morales, F. 2009. Molecular characterization of rice stripe necrosis virus as a new species of the genus Benyvirus. Eur. J. Plant Path. 124:673–680.CrossRefGoogle Scholar
  21. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R. 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41 (Web server issue); W597–600.Google Scholar
  22. Mouhanna, A.M., Choueiri, E., Langen, G. 2008. First report of Polymyxa betae and Polymyxa graminis in Lebanon. J. Plant Pathol. 90:585–589.Google Scholar
  23. Neuhauser, S., Kirchmair, M., Bulman, S., Bass, D. 2014. Cross-kingdom host shifts of phytomyxid parasites. BMC Evol. Biol. 14:33.CrossRefGoogle Scholar
  24. Ratti, C., Budge, G., Ward, L., Clover, G. 2004. Detection and relative quantitation of soil-borne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan®). J. Virol. Methods 122:95–103.CrossRefGoogle Scholar
  25. Sahandpour, A., Izadpanah, K. 1999. Report of P. graminis and a virus resembling wheat soilborne mosaic virus from Fars. Iranian J. Plant Pathol. 35:61.Google Scholar
  26. Smith, M.J., Adams, M.J., Ward, E. 2011. Evidence that Polymyxa species may infect Arabidopsis thaliana. FEMS Microbiol. Letters 318:35–40.CrossRefGoogle Scholar
  27. Smith, M.J., Adams, M.J., Ward, E. 2013. Ribosomal DNA analyses reveal greater sequence variation in Polymyxa species than previously thought and indicate the possibility of new ribotype-host-virus associations. Env. Microbiol. Rep. 5:143–150.CrossRefGoogle Scholar
  28. Tamada, T., Kondo, H. 2013. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. J. Gen. Plant Pathol. 79:307–320.CrossRefGoogle Scholar
  29. Thouvenel, J.C., Fauquet, C. 1981. Further properties of peanut clump virus and studies on its natural transmission. Ann. Appl. Biol. 97:99–107.CrossRefGoogle Scholar
  30. Tuitert, G., Vanoorschot, P.M.S.M., Heijbroek, W. 1994. Effect of sugar-beet cultivars with different levels of resistance to beet necrotic yellow vein virus on transmission of virus by Polymyxa betae. Eur. J. Plant Pathol. 100:201–220.CrossRefGoogle Scholar
  31. Vaianopoulos, C., Bragard, C., Moreau, V., Maraite, H., Legreve, A. 2007. Identification and quantification of Polymyxa graminis f. sp. temperata and P. graminis f. sp. tepida on barley and wheat. Plant Dis. 91:857–864.CrossRefGoogle Scholar
  32. Ward, E., Adams, M.J., Mutasa, E.S., Collier, C.R., Asher, M.J.C. 1994. Characterization of Polymyxa species by restriction analysis of PCR-amplified ribosomal DNA. Plant Pathol. 43:872–877.CrossRefGoogle Scholar
  33. Ward, E., Adams, M. 1998. Analysis of ribosomal DNA sequences of Polymyxa species and related fungi and the development of genus- and species-specific PCR primers. Mycol. Res. 102:965–974.CrossRefGoogle Scholar
  34. Ward, L.I., Fenn, M.G.E., Henry, C.M. 2004. A rapid method for direct detection of Polymyxa DNA in soil. Plant Pathol. 53:485–490.CrossRefGoogle Scholar
  35. Ward, E., Kanyuka, K., Motteram, J., Kornyukhin, D., Adams, M.J. 2005. The use of conventional and quantitative real-time PCR assays for Polymyxa graminis to examine host plant resistance, inoculums levels and intraspecific variation. New Phytologist 165:875–885.CrossRefGoogle Scholar
  36. White, T.J., Bruns, T., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (eds), PCR Protocols: a Guide to Methods and Applications. Academic Press. New York, USA. pp. 315–322.Google Scholar
  37. Yilmaz, N.D.K., Lyons, R.L., Smith, M.J., Kanyuka, K. 2011. Investigation of soilborne mosaic virus diseases transmitted by P. graminis in cereal production areas of the Anatolian part of Turkey. Eur. J. Plant Pathol. 130:59–72.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Ziegler
    • 1
    Email author
  • V. Fomitcheva
    • 1
  • A. N. Zakri
    • 2
  • U. Kastirr
    • 1
  1. 1.Julius Kühn-InstituteInstitute for Epidemiology and Pathogen DiagnosticsQuedlinburgGermany
  2. 2.Plant Production Department, Faculty of Agriculture and Food SciencesKing Saud UniversityRyiadhKingdom of Saudi Arabia

Personalised recommendations