Advertisement

Cereal Research Communications

, Volume 44, Issue 1, pp 47–56 | Cite as

Development of a Multiplex Event-specific PCR Assay for Detection of Genetically Modified Rice

  • J. Lu
  • G. Z. Ji
  • G. Li
  • Y. F. Wu
  • J. Yang
  • S. L. Lin
  • D. L. Yang
  • J. N. Zhao
  • W. M. XiuEmail author
Open Access
Genetics

Abstract

Global rice supplies have been found contaminated with unapproved varieties of genetically modified (GM) rice in recent years, which has led to product recalls in several of countries. Faster and more effective detection of GM contamination can prevent adulterated food, feed and seed from being consumed and grown, minimize the potential environmental, health or economic damage. In this study, a simple, reliable and cost-effective multiplex polymerase chain reaction (PCR) assay for identifying genetic modifications of TT51–1, Kemingdao1 (KMD1) and Kefeng6 (KF6) rice was developed by using the event-specific fragment. The limit of detection (LOD) for each event in the multiplex PCR is approximately 0.1%. Developed multiplex PCR assays can provide a rapid and simultaneous detection of GM rice.

Keywords

multiplex polymerase chain reaction genetically modified rice detection event-specific 

Notes

Acknowledgements

This work was supported by Central Public Research Institutes Basic Funds for Research and Development (Agro-Environmental Protection Institute, Ministry of Agriculture).

References

  1. Arun, O.O., Yilmaz, F., Muratogolu, K. 2013. PCR detection of genetically modified maize and soy in mildly and highly processed foods. Food Control 32:525–531.CrossRefGoogle Scholar
  2. Babekova, R., Funk, T., Pecoraro, S., Engel, K.H., Busch, U. 2009. Development of an event-specific Real-time PCR detection method for the transgenic Bt rice line KMD1. Eur. Food Res. Technol. 228:707–716.CrossRefGoogle Scholar
  3. Babekova, R., Funk, T., Engel, K.H., Baikova, D., Busch, U. 2008. Duplex polymerase chain reaction (PCR) for the simultaneous detection of cryIA(b) and the maize ubiquitin promoter in the transgenic rice line KMD1. Biotechnol. & Biotechnol. Eq. 22:705–708.CrossRefGoogle Scholar
  4. Bahrdt, C., Krech, A.B., Wurz, A., Wulff, D. 2010. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed. Anal. Bioanal. Chem. 396:2103–2112.CrossRefGoogle Scholar
  5. Cao, Y.L., Wu, G., Wu, Y.H., Nie, S.J., Zhang, L., Lu, C.M. 2011. Characterization of the transgenic rice event TT51–1 and construction of a reference plasmid. J. Agri. Food Chem. 59:8550–8559.CrossRefGoogle Scholar
  6. CERA 2010. GM Crop Database. Center for Environmental RiskAssessment (CERA), ILSI Research Foundation. Available at: http://www.cera-gmc.org/GMCropDatabase. Verified 2 January 2015.
  7. Chen, X.Y., Wang, X.F., Jin, N., Zhou, Y., Huang, S.N., Miao, Q.M., Zhu, Q., Xu, J.F. 2012. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification. Int. J. Mol. Sci. 13:14421–14433.CrossRefGoogle Scholar
  8. Chen, M., Shelton, A., Ye, G. 2011. Insect-resistant genetically modified rice in China: from research to commercialization. Annu. Rev. Entomol. 56:81–101.CrossRefGoogle Scholar
  9. Dellaporta, S.L., Wood, J., Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Bio. Rep. 1:19–21.CrossRefGoogle Scholar
  10. Demeke, T., Giroux, R.W., Reitmeier, S., Simon, S.L. 2002. Development of a polymerase chain reaction assay for detection of three canola transgenes. J. Am. Oil Chem. Soc. 79:1015–1019.CrossRefGoogle Scholar
  11. Ding, J., Jia, J., Yang, L., Wen, H., Zhang, C., Liu, W., Zhang, D. 2004. Validation of a rice specific gene, sucrose phosphatesynthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J. Agr. Food Chem. 52:3372–3377.CrossRefGoogle Scholar
  12. Dong, W., Yang, L., Shen, K., Kim, B., Kleter, G.A., Marvin, H.J., Guo, R., Liang, W., Zhang, D. 2008. GMDD: A database of GMO detection methods. BMC Bioinformatics 9:260.CrossRefGoogle Scholar
  13. Ghareyazie, B. 2012. GMOs to be commercialized in Iran in the next five years. Food and Agriculture Organization’s e-mail conference on GMOs in the pipeline: Looking to the next five years in the crop, forestry, livestock, aquaculture and agro-industry sectors in developing countries. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: http://www.fao.orgbiotech/biotech-forum/en/. Verified 6 June 2015.
  14. GM Contamination Register 2007. Annual review of cases of contamination, illegal planting and negative side effects of genetically modified organisms 02/07. Greenpeace International, Amsterdam, The Netherlands. Available at: http://www.gmcontaminationregister.orgindex.php?content=re&handle2_page=0&reg=0&inc=0&con=0&cof=0&year=2007. Verified 6 June 2015.
  15. Heller, K.J. 2003. Detection of genetic modifications: some basic considerations. In: Heller, K.J. (ed.), Genetically Engineered Food: Methods and Detection. http://www.logobook.ru/prod_show.php?object_uid=11062765 pp. 147–154.
  16. James, C. 2010. Global Status of Commercialized Biotech/GM Crops: 2010, ISAAA Briefs No.42, International Service for the Acquisition of Agri-biotech Application (ISAAA), Ithaca, NY, USA. Available at: http://www.isaaa.org/resources/publications/briefs/42/. Verified 6 June 2015.
  17. James, C. 2013. Global Status of Commercialized Biotech/GM Crops: 2013, ISAAA Brief No.46, International Service for the Acquisition of Agri-biotech Application (ISAAA), Ithaca, NY, USA. Available at: http://www.isaaa.org/resources/publications/briefs/46/. Verified 6 June 2015.
  18. Jiang, L., Yang, L., Zhang, H., Guo, J., Mazzara, M., Van, E.G., Zhang, D. 2009. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. J. Agr. Food Chem. 57:3525–3532.CrossRefGoogle Scholar
  19. Kamle, S., Kumar, A., Bhatnagar, R.K. 2010. Development of multiplex and construct specific PCR assay for detection of cry2Ab transgene in genetically modified crops and product. GM Crops 2:74–81.CrossRefGoogle Scholar
  20. Kim, J.H., Jeong, D., Kim, Y.R., Kwon, Y.K., Rhee, G.S., Zhang, D., Kim, H.Y. 2013. Development of a multiplex PCR method for testing six GM soybean events. Food Control 31:366–371.CrossRefGoogle Scholar
  21. Kim, J.H., Zhang, D., Kim, H.Y. 2014. Detection of sixteen genetically modified maize events in processed foods using four event-specific pentaplex PCR systems. Food Control 35:345–353.CrossRefGoogle Scholar
  22. Kim, J.H., Seo, Y.J., Sun, S.H., Kim, H.Y. 2009. Multiplex PCR detection of 4 events of genetically modified soybeans (RRS, A2704–12, DP356043–5, and MON 89788). Food Sci. Biotechnol. 18:694–699.Google Scholar
  23. Kim, J.H., Kim, T.W., Lee, W.Y., Park, S.H., Kim, H.Y. 2007. Multiplex PCR detection of the GT73, MS8×RF3, and T45 varieties of GM canola. Food Sci. Biotechnol. 16:104–109.Google Scholar
  24. Kim, J.H., Kim, S.A., Seo, Y.J., Lee, W.Y., Park, S.H., Kim, H.Y. 2008. Multiplex PCR detection of the MON1445, MON15985, MON88913, and LLcotton 25 varieties of GM cotton. Food Sci. Biotechnol. 17:829–832.Google Scholar
  25. Kluga, L., Folloni, S., Kagkli, D.M., Bogni, A., Foti, N., Savini, C., Mazzara, M., Van den Eede, G., Vanden Bulcke, M. 2013. Combinatory SYBR® green real-time pcr screening approach for tracing materials derived from genetically modified rice. Food Anal. Method. 6:361–369.CrossRefGoogle Scholar
  26. Kwon, J.Y., Hong, J.H., Kim, M.J., Choi, S.H., Min, B.E., Song, E.G., Kim, H.H., Ryu, K.H. 2014. Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. J. Viro. Methods 206:133–139.CrossRefGoogle Scholar
  27. Lee, N., Kwon, K.Y., Oh, S.K., Chang, H.J., Chun, H.S., Choi, S.W. 2014. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog. Dis. 11:574–580.CrossRefGoogle Scholar
  28. Liu, Z., Li, Y., Zhao, J., Chen, X., Jian, G., Peng, Y., Qi, F. 2012. Differentially expressed genes distribute over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao. Int. J. Biol. Sci. 8:953–963.CrossRefGoogle Scholar
  29. Lu, C.M. 2010. The first approved transgenic rice in China. GM Crops I:113–115.CrossRefGoogle Scholar
  30. Reiting, R., Grohmann, L., Moris, G., Mäde, D. 2013. Detection and characterization of an unknown rice event in Basmati rice products. Eur. Food Res. Technol. 236:715–723.CrossRefGoogle Scholar
  31. Rodríguez-Lázaro, D., Lombard, B., Smith, H., Rzezutka, A., Agostino, D.M., Helmuth, R., Schroeter, A., Burkhard, M. 2007. Trends in analytical methodology in food safety and quality: monitoring microorganisms and genetically modified organisms. Trends Food Sci. Tech. 18:306–319.CrossRefGoogle Scholar
  32. Rong, J., Song, Z., Su, J., Xia, H., Lu, B.R., Wang, F. 2005. Low frequency of transgene flow from bt/cpti rice to its nontrangenic counterparts planted at clse spacing. New Phytol. 168:559–566.CrossRefGoogle Scholar
  33. Seck, P.A., Diagne, A., Mohanty, S., Wopereis, M.C.S. 2012. Crops that feed the world 7: rice. Food Sec. 4:7–24.CrossRefGoogle Scholar
  34. Shrestha, H.K., Hwu, K.K., Chang, M.C. 2010. Advances in detection of genetically engineered crops by multiplex polymerase chain reaction methods. Trends Food Sci. Tech. 21:442–454.CrossRefGoogle Scholar
  35. Tu, J.M., Datta, K., Oliva, N., Zhang, G.A., Xu, C.G., Khush, G.S., Zhang, Q.F., Dattal, S.K. 2003. Site-independently integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotechnol. J. I:155–165.CrossRefGoogle Scholar
  36. Wang, W., Zhu, T., Lai, F., Fu, Q. 2011. Event-specific qualitative and quantitative detection of transgenic rice Kefeng-6 by characterization of the transgene flanking. Eur. Food Res. Technol. 232:297–305.CrossRefGoogle Scholar
  37. Wu, G., Wu, Y., Nie, S., Zhang, L., Xiao, L., Cao, Y., Lu, C. 2010. Real-time PCR method for detection of the transgenic rice event TT51–1. Food Chem. 119:417–422.CrossRefGoogle Scholar
  38. Yang, L.T., Pan, A.H., Zhang, K.W., Guo, J.C., Yin, C.S., Chen, J.X., Huang, C., Zhang, D.B. 2005. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods. J. Agr. Food Chem. 53:6222–6229.CrossRefGoogle Scholar
  39. Yang, L., Guo, J., Pan, A., Zhang, H., Zhang, K., Wang, Z., Zhang, D. 2007. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. J. Agric. Food Chem. 55:15–24.CrossRefGoogle Scholar
  40. You, M.J. 2014. Detection of four important Eimeria species by multiplex PCR in a single assay. Parasitol. Int. 63:527–532.CrossRefGoogle Scholar
  41. Zhang, D., Guo, J. 2011. The development and standardization of testing methods for genetically modified organisms and their derived products. J. Integr. Plant Biol. 53:539–551.CrossRefGoogle Scholar
  42. Zi, X. 2005. GM rice forges ahead in China amid concerns over illegal planting. Nat. Biotechnol. 23:637.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. Lu
    • 1
    • 2
  • G. Z. Ji
    • 1
    • 2
  • G. Li
    • 2
    • 3
  • Y. F. Wu
    • 2
  • J. Yang
    • 2
  • S. L. Lin
    • 2
  • D. L. Yang
    • 2
    • 3
  • J. N. Zhao
    • 1
    • 2
    • 3
  • W. M. Xiu
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
  2. 2.Agro-Environmental Protection Institute, Ministry of AgricultureTianjinChina
  3. 3.Tianjin Engineering Research Center of Agricultural Ecological & Environmental RemediationTianjinChina

Personalised recommendations