Advertisement

Cereal Research Communications

, Volume 44, Issue 1, pp 13–23 | Cite as

Comparative Proteomic Analysis of Wheat Developing Grains between Chinese Spring and 1Sl/1B Substitution Line

  • Y. Liu
  • S. Wang
  • C. Wang
  • G. Chen
  • H. Cao
  • Y. Wang
  • W. Ma
  • Y. HuEmail author
  • Y. YanEmail author
Genetics

Abstract

A comparative proteomic analysis of grain proteins during five grain developmental stages of wheat cultivar Chinese Spring (CS) and its 1Sl/1B substitution line CS-1Sl(1B) was carried out in the current study. A total of 78 differentially expressed protein (DEP) spots with at least 2-fold expression difference were detected by two-dimensional electrophoresis (2-DE). Among these, 73 protein spots representing 55 differentially expressed proteins (DEPs) were successfully identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS). Differential protein spots between the two genotypes were analyzed by cluster software, which revealed significant proteome differences. There were 39 common spots (including 33 DEPs) that showed significant difference between the two lines across five grain developmental stages, of which 14 DEP spots (including 11 DEPs) were mainly involved in carbohydrate metabolism that were encoded by the genes on 1B chromosome while 25 DEP spots (including 12 DEPs) were mainly related to stress response and gluten quality that were encoded by 1Sl chromosome. These results indicated that the Sl genome harbors more stress and quality related genes that are potential valuable for improving wheat stress resistance and product quality.

Keywords

wheat differentially expressed proteins 1Sl/1B substitution comparative proteome expression patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was financially supported by grants from the National Natural Science Foundation of China (31471485), International Science & Technology Cooperation Program of China (2013DFG30530), Natural Science Foundation of Beijing City and the Key Developmental Project of Science and Technology, Beijing Municipal Commission of Education (KZ201410028031), and the National Key Project for Transgenic Crops of China (2014ZX08009-003).

Supplementary material

42976_2016_4401013_MOESM1_ESM.pdf (360 kb)
Comparative Proteomic Analysis of Wheat Developing Grains between Chinese Spring and 1Sl/1B Substitution Line

References

  1. Badea, A., Eudes, F., Graf, R. J., Laroche, A., Gaudet, D.A., Sadasivaiah, R.S. 2008. Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to fusarium head blight. Euphytica 164:803–819.CrossRefGoogle Scholar
  2. Bietz, J.A., Wall, J.S. 1972. Wheat gluten subunits: Molecular weight determined by sodium deodecyl sulfate – polyacrylamide gel electrophoresis. J. Food Sci. 49:416–430.Google Scholar
  3. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L., D’Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F.X., Edwards, K.J., Bevan, M.W., Hall, N. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710.CrossRefGoogle Scholar
  4. Cao, H., Yan, X., Chen, G.X., Zhou, J.W., Li, X.H., Ma, W.J., Yan, Y.M. 2015. Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. J. Proteomics 112:95–112.CrossRefGoogle Scholar
  5. De Mao, A. 1999. Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12.CrossRefGoogle Scholar
  6. Dong, K., Ge, P., Ma, C.Y., Wang, K., Yan X., Gao, L.Y., Li, X.H., Liu, J.X., Ma, W.J., Yan, Y.M. 2012. Albumin and globulin dynamics during grain development of elite Chinese wheat cultivar Xiaoyan 6. J. Cereal Sci. 56:615–622.CrossRefGoogle Scholar
  7. Gao, L.Y., Wang, A.L., Li, X.H., Dong, K., Wang, K., Appels, R., Ma, W.J., Yan, Y.M. 2009. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE). J. Proteomics 73:279–296.CrossRefGoogle Scholar
  8. Ge, P., Ma, C.Y., Wang, S.L., Gao, L.Y., Li, X.H., Guo, G.F., Ma, W.J., Yan, Y.M. 2011. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal. Bioanal. Chem. 402:1297–1313.CrossRefGoogle Scholar
  9. Guo, G., Lv, D., Yan, X., Subburaj, S., Ge, P., Li, X., Hu, Y., Yan, Y. 2012. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol. 12:147.CrossRefGoogle Scholar
  10. Harper, J., Armstead, I., Thomas, A., James, C., Gasior, D., Bisaga, M., Roberts, L., King, I., King, J. 2011. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. Ann. Bot. 107:1313–1321.CrossRefGoogle Scholar
  11. IWGSC (The International Wheat Genome Sequencing Consortium) 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788–1/11.CrossRefGoogle Scholar
  12. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., International Wheat Genome Sequencing Consortium, Yang, H., Liu, X., He, Z., Mao, L., Wang, J. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95.CrossRefGoogle Scholar
  13. Ling, H.Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu, H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J., Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90.CrossRefGoogle Scholar
  14. Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., Olsen, O.A. 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:1250092–1/4.CrossRefGoogle Scholar
  15. Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Bergès, H., Eversole, K., Appels, R., Safar, J., Simkova, H., Dolezel, J., Bernard, M., Feuillet, C. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104.CrossRefGoogle Scholar
  16. Payne, P.I., Holt, L.M., Krattiger, A.F., Carrillo, J.M. 1988. Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. J. Cereal Sci. 7:229–235.CrossRefGoogle Scholar
  17. Salt, L.J., Robertson, J.A., Jenkins, J.A., Mulholland, F., Mills, E.N.C. 2005. The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough. Proteomics 5:1612–1623.CrossRefGoogle Scholar
  18. Sasanuma, T., Chabane, K., Endo, T.R., Valkoun, J. 2004. Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor. Appl. Genet. 108:612–618.CrossRefGoogle Scholar
  19. Sheng, H., See, D.R., Murray, T.D. 2012. Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theor. Appl. Genet. 125:355–366.CrossRefGoogle Scholar
  20. Singh, N.K., Donovan, G.R., Carpenter, H.C., Skerritt, J.H., Langridge, P. 1993. Isolation and characterization of wheat triticin cDNA revealing a unique lysine-rich repetitive domain. Plant Mol. Biol. 22:227–237.CrossRefGoogle Scholar
  21. Skylas, D.J., Mackintosh, J.A., Cordwell, S.J., Basseal, D.J., Walsh, B.J., Harry, J. 2000. Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm. J. Cereal Sci. 32:169–188.CrossRefGoogle Scholar
  22. Sung, D.Y., Vierling, E., Guy, C.L. 2001. Comprehensive expression profile analysis of the Arabidopsis HSP70 gene family. Plant Physiol. 126:789–800.CrossRefGoogle Scholar
  23. Vensel, W.H., Tanaka, C.K., Cai, N., Wong, J.H., Buchanan, B.B., Song, Y.H., Zheng, Q. 2007. Dynamic rheological properties of wheat flour dough and proteins. Trends Food Sci. Technol. 18:132–138.CrossRefGoogle Scholar
  24. Wang, Z.X., Zeller, F.J. 1992. Studies of Giemsa C-banding pattern in Ae. longissima and identifications of Chinese Spring-Ae. longissima addition, substitutions and translocation. J. Genet. Genomics 19:517–522.Google Scholar
  25. Wang, W., Vinocur, B., Shoseyov, O., Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244–252.CrossRefGoogle Scholar
  26. Wang, S.L., Yu, Z.T., Cao, M., Shen, X.X., Li, N., Li, X.H., Ma, W.J., Weissgerber, H., Zeller, F., Hsam, S., Yan, Y.M. 2013. Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One 8:e58947.CrossRefGoogle Scholar
  27. Winkler, J., Tyedmers, J., Bukau, B., Mogk, A. 2012. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell. Biol. 198:387–404.CrossRefGoogle Scholar
  28. Zhang, M., Ma, C.Y., Lv, D.W., Zhen, S.M., Li, X.H., Yan, Y.M. 2014. Comparative phosphoproteome analysis of the developing grains in bread Wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. J. Proteome Res. 13:4281–4297.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of Life Science, Capital Normal UniversityBeijingChina
  2. 2.State Agriculture Biotechnology CentreMurdoch UniversityA. PerthAustralia
  3. 3.School of Veterinary & Life Sciences, Murdoch University and Australian Export Grains Innovation CentrePerthAustralia
  4. 4.Hubei Collaborative Innovation Center for Grain Industry (HCICGI)JingzhouChina

Personalised recommendations