Advertisement

Cereal Research Communications

, Volume 44, Issue 1, pp 111–121 | Cite as

Silicon-mediated Mitigation of Wounding Stress Acts by Up-regulating the Rice Antioxidant System

  • Y. -H. Kim
  • A. L. Khan
  • M. Waqas
  • R. Shahzad
  • I. -J. LeeEmail author
Physiology

Abstract

Silicon (Si) is essential for normal growth and development in plants and is also beneficial for their responses to wounding. However, the mechanisms by which Si acts to mitigate the effects of wounding is not fully understood. This effect possibly occurs through a reduction in the oxidative stresses associated with wounding. Here, we tested this possibility by investigating the effects of applying different concentrations of Si (0,5 and 1,0 mM) to rice plants under wounding stress for a period of 6 and 12 h. We found that a higher uptake of Si was signifiacntly associated with an increase in leaf chlorophyll contet. In response to wounding induced oxidative stress, the extent of lipid bilayer peroxidation was reduced in a dose-dependent manner by Si application for 6 or 12 h. Activity of the catalase enzyme was initially lowered by Si treatment; however, at 1.0 mM Si, catalase activity increased significantly after 12h of wounding stress. A similar response was also observed for a peroxidase enzyme. Polyphenol oxidase showed a significant reduction in activity. We conclude that Si application does not only improve leaf chlorophyll content but can also overcome the oxidative stress due wounds or physical injuries.

Keywords

silicon antioxidant enzymes wounding stress lipid peroxidation Oryza sativa japonica time and dose dependent effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2A10058022).

Supplementary material

42976_2016_4401111_MOESM1_ESM.pdf (869 kb)
Silicon-mediated Mitigation of Wounding Stress Acts by Up-regulating the Rice Antioxidant System

References

  1. Aebi, H. 1984. Catalase in vitro. Methods in Enzymol. 105:121–127.CrossRefGoogle Scholar
  2. Afiyanti, M., Chen, H.J. 2014. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato. J. Plant Physiol. 171:35–47.PubMedCrossRefGoogle Scholar
  3. Araji, S., Grammer, T.A., Gertzen, R., Anderson, S.D., Mikulic-Petkovsek, M., Veberic, R., Phu, M.L., Solar, A., Leslie, C.A., Dandekar, A.M., Escobar, M.A. 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut (Juglan sregia). Plant Physiol. 164:1191–1203.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Becana, M., Dalton, D.A., Moran, J.F., Iturbe, O.I., Matamoros, M.A., Rubio, M.C. 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol. Planta. 109:372–381.CrossRefGoogle Scholar
  5. Belanger, R.R., Benhamou, N., Menzies, J.G. 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathol. 93:402–412.CrossRefGoogle Scholar
  6. Bockhaven, J.V., Vleesschauwer, D.D., Höfte, M. 2012. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J. Exp. Bot. 64:1281–1293.PubMedCrossRefGoogle Scholar
  7. Cai, K., Gao, D., Chen, J., Luo, S. 2009. Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signal. Behav. 4:1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Claeys, H., Landeghem, S.V., Dubois, M., Maleux, K., Inzé, D. 2014. What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol. 165:519–527.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Constabel, C.P., Ryan, C.A. 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochem. 47:507–511.CrossRefGoogle Scholar
  10. Currie, H.A., Perry, C.C. 2007. Silica in plants: biological, biochemical and chemical studies. Ann. Bot. 100:1383–1389.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Davey, M.W., Stals, E., Panis, B., Keulemans, J., Swennen, R.L. 2005. High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem. 347:201–207.PubMedCrossRefGoogle Scholar
  12. Dionisio-Sese, M.L., Tobita, S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1–9.CrossRefGoogle Scholar
  13. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Nat. Acad. Sci. 91:11–17.PubMedCrossRefGoogle Scholar
  14. Epstein, E. 1999. Silicon: Ann. Rev. Plant Physiol. Mol. Biol. 50:641–664.CrossRefGoogle Scholar
  15. Eraslan, A.I., Pilbeam, D.J., Gunes, A. 2008. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul. 55:207–219.Google Scholar
  16. Esterbauer, H., Schaur, R.J., Zollner, H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde, and related aldehydes. Free Radic. Biol. Med. 11:81–128.PubMedCrossRefGoogle Scholar
  17. Fang, W., Kao, C.H. 2000. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci. 158:71–76.PubMedCrossRefGoogle Scholar
  18. Fauteux, F., Rémus-Borel, W., Menzies, J.G., Bélanger, R.R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Letters 249:1–6.CrossRefGoogle Scholar
  19. Feng, J., Shi, Q., Wang, X. 2009. Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agri. Sci. China 8:40–50.CrossRefGoogle Scholar
  20. Foyer, C.H., Lelandais, M., Kunert, K.J. 1994. Photooxidative stress in plants. Physiol. Planta. 92:696–717.CrossRefGoogle Scholar
  21. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321.CrossRefGoogle Scholar
  22. Hamayun, M., Sohn, E.Y., Khan, S.A., Shinwari, Z.K., Khan, A.L., Lee, I.J. 2010. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine Max L.). Pak. J. Bot. 42:1713–1722.Google Scholar
  23. Hattori, T., Inanage, S., Araki, H., An, P., Morita, S., Luxova, M., Lux, A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Planta. 123:459–466.CrossRefGoogle Scholar
  24. Heine, G., Tikum, G., Horst, W.J. 2007. The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. J. Exp. Bot. 58:569–577.PubMedCrossRefGoogle Scholar
  25. Horst, W.J., Marschner, H. 1978. Effect of silicon and manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil. 50:287–303.CrossRefGoogle Scholar
  26. Isa, M., Bae, S., Yokoyama, T., Ma, J.F., Ishibashi, Y., Yuasa, T., Iwaya-Inoue, M. 2010. Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant Soil. 331:361–375.CrossRefGoogle Scholar
  27. Kar, M., Mishra, D. 1976. Catalase, peroxidase, and polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 57:315–319.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kim, Y.H., Khan, A.L., Hamayun, M., Kang, S.M., Beom, Y.J., Lee, I.J. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol. Trace Elem Res. 144:1175–1185.PubMedCrossRefGoogle Scholar
  29. Kim, Y.H., Khan, A.L., Hamayun, M., Kang, S.M., Lee, I.J. 2012. Silicon treatment to rice (Oryza sativa L. cv. ‘Gopumbyeo’) plants during different growth periods and its effects on growth and grain yield. Pak. J. Bot. 44:891–897.Google Scholar
  30. Kim, Y.H., Khan, A.L., Kim, D.H., Lee, S.Y., Kim, K.M., Waqas, M., Jung, H.Y., Shin, J.H., Kim, J.G., Lee, I.J. 2014a. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14:13.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kim, YH, Khan, AL, Waqas, M, Jeong, HJ, Kim, DH, Shin, JS, Kim, JG, Yeon, MH, Lee, IJ. 2014b. Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. J Plant Res. 127: 525–532.PubMedCrossRefGoogle Scholar
  32. Kim, Y.H., Khan, A.L., Waqas, M., Shim, J.K., Kim, D.H., Lee, K.Y., Lee, I.J. 2014c. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul. 33:137–149.CrossRefGoogle Scholar
  33. Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S., Liu, T.T.Y. 1997. Characterization of antisense transformed plant deficient in the tobacco anionic peroxidase. Plant Physiol. 114:1187–1196.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Leon, J., Rojo, E., Sanchez-Serano, J. 2001. Wound signaling in plants. J. Exp. Bot. 52:1–9.PubMedCrossRefGoogle Scholar
  35. Li, C., Schilmiller, A.L., Liu, G.L., Lee, G.I., Jayanty, S., Sageman, C. 2005. Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Li, Y.C., Adva, A.K., Sumner, M.E. 1989. Response of cotton cultivars to aluminum in solutions with varying silicon concentration. J. Plant Nutri. 12:475–483.CrossRefGoogle Scholar
  37. Liang, S.W., Zhu, Y.G., Christie, P. 2007. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollution 147:422–428.CrossRefGoogle Scholar
  38. Liang, Y., Wong, J., Wei, L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lin, C.C., Kao, C.H. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul. 30:151–155.CrossRefGoogle Scholar
  40. Lux, A., Luxova, M., Hattori, T., Inanaga, S., Sugimoto, Y. 2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plant. 115:87–92.PubMedCrossRefGoogle Scholar
  41. Ma, J.F., Takahashi, E. 2002. Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, B.V. Amsterdam, The Netherlands.Google Scholar
  42. Ma, J.F., Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397.PubMedCrossRefGoogle Scholar
  43. Ma, J.F., Yamaji, N. 2008. Functions and transport of silicon in plants. Cell Mol. Life Sci. 62:3049–3057.CrossRefGoogle Scholar
  44. Massey, F.P., Hartley, S.E. 2009. Physical defenses wear you down: progressive and irreversible impacts of silica on insect herbivores. J. Ani. Ecol. 78:281–291.CrossRefGoogle Scholar
  45. Mayer, A.M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67:2318–2331.PubMedCrossRefGoogle Scholar
  46. McAvoy, R.J., Bible, B.B. 1996. Silica sprays reduce the incidence and severity of bract necrosis in Poinsettia. Horti. Sci. 31:1146–1149.Google Scholar
  47. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., Breusegem, F.V. 2011. ROS signaling: the new wave? Trends Plant Sci. 16:300–309.PubMedCrossRefGoogle Scholar
  48. Mohammadi, M., Kazemi, H. 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci. 162:491–498.CrossRefGoogle Scholar
  49. Mesquita, V.L.V., Queiroz, C. 2013. Enzymatic browning. In: Eskin, N.A.M., Shahidi, F. (eds), Biochemistry of Foods. Academic Press. London, UK. pp. 387–418.CrossRefGoogle Scholar
  50. Neumann, D., zur Nieden, U. 2001. Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692.PubMedCrossRefGoogle Scholar
  51. Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Ana. Biochem. 95:351–358.CrossRefGoogle Scholar
  52. Reyes, F., Luis, C.Z. 2003. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). Agri. Food Chem. 51:5296–5300.CrossRefGoogle Scholar
  53. Richmond, R.E., Sussman, M. 2003. Got silicon? The non-essential beneficial plant nutrient. Cur. Opi. Plant Biol. 6:268–272.CrossRefGoogle Scholar
  54. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E., Li, J. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167:1248–1252.PubMedCrossRefGoogle Scholar
  55. Sivanesan, I., Park, S.W. 2014. The role of silicon in plant tissue culture. Front. Plant Sci. 5:571. doi:10.3389/fpls.2014.00571PubMedPubMedCentralCrossRefGoogle Scholar
  56. Van Hoest, P.J. 2006. Rice straw, the role of silica and treatments to improve quality. Ani. Feed Sci. Technol. 130:137–171.CrossRefGoogle Scholar
  57. Varnová, E., Inzé, D., Breusegem, F.V. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53:1227–1236.CrossRefGoogle Scholar
  58. Wasternack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H., Neumerkel, J., Feussner, I., Miersch, O. 2006. The wound response in tomato-role of jasmonic acid. J. Plant Physiol. 163:297–306.PubMedCrossRefGoogle Scholar
  59. Weber, H., Chételat, A., Reymond, P., Farmer, E.E. 2004. Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J. 37:877–888.PubMedCrossRefGoogle Scholar
  60. Yoshida, S., Ohnishi, Y., Kitagishi, K. 1959. Role of silicon in rice nutrition. Soil Plant Food 5:127–133.CrossRefGoogle Scholar
  61. Zhu, Z., Wei, G., Li, J., Qian, Q., Yu, J. 2004. Silicon alleviates salt stress and increase antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Y. -H. Kim
    • 1
    • 2
  • A. L. Khan
    • 1
    • 3
  • M. Waqas
    • 1
    • 4
  • R. Shahzad
    • 1
  • I. -J. Lee
    • 1
    Email author
  1. 1.School of Applied Biosciences, Kyungpook National UniversityDaeguKorea
  2. 2.Division of Plant Sciences and National Center for Soybean BiotechnologyUniversity of MisssouriColumbiaUnited States
  3. 3.UoN Chair of Oman’s Medicinal Plants & Marine Natural ProductsUniversity of NizwaNizwaOman
  4. 4.Department of Agriculture ExtensionBunerPakistan

Personalised recommendations