Cereal Research Communications

, Volume 43, Issue 4, pp 604–615 | Cite as

Effect of EDTA-assisted Copper Uptake on Photosynthetic Activity and Biomass Production of Sweet Sorghum

  • P. Poór
  • A. Ördög
  • B. Wodala
  • I. TariEmail author


Sweet sorghum (Sorghum bicolor L. Moench cv. Róna) is a widely grown sugar crop that is used for bioenergy production. Since sorghum shows increased sensitivity to nutrient deficiency, the objective of this study was to reach an appropriate Cu level in plant tissues using various concentrations of Cu and ethylenediaminetetraacetic acid (EDTA) in order to enhance the photosynthetic activity and biomass production of plants. Copper accumulation increased in the root and stem of plants irrigated for 12 weeks with 0.1 μM CuCl2 both in the presence and absence of 300 μM EDTA and as a consequence, the plant-available Cu concentration in the soil extracts was lower at harvest. Although the copper content of leaves slightly increased, the transport of Fe and Mn, the microelements participating in light reactions of photosynthesis was negatively affected. In spite of this, 0.1 μM CuCl2 alone and with 200 or 300 μM EDTA enhanced the maximal CO2 assimilation rate (Amax) as a function of photon flux density (PPFD) and increased soluble sugar content in all plant parts. The dry mass of plants especially that of stems increased very significantly after 0.1 μM CuCl2 + 300 μM EDTA treatment. These results show that non-toxic concentration of copper in combination with suitable concentration of EDTA can enhance photosynthesis, biomass production, sugar content and the total copper accumulation in the shoot of sweet sorghum plants.


biomass production copper accumulation microelements soluble sugars Sorghum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the projects named “TÁMOP-4.2.1/B-09/1/KONV-2010-0005 - Creating the Center of Excellence at the University of Szeged” and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 financed by the European Union and co-financed by the European Regional Fund (, We thank Kispálné Szabó Ibolya and Ádámné Meszlényi Mária for their excellent technical assistance. We also thank Cereal Research Non-Profit Ltd., Szeged, Hungary for sweet sorghum seeds.


  1. Alloway, B.J. 1995. Soil processes and the behavior of heavy metals. In: Alloway, B.J. (ed.), Heavy Metals in Soils (2nd ed.). Blackie Academic and Professional, London, UK. pp. 38–57.CrossRefGoogle Scholar
  2. Alloway, B.J. 2005. Copper Deficient Soils in Europe. Int. Copper Assoc. New York, USA. pp. 129.Google Scholar
  3. Angelova, V.R., Ivanova, R.V., Delibaltova, V.A., Ivanov, K.I. 2011. Use of Sorghum crops for in situ phytore-mediation of polluted soils. J. Agric. Sci. Technol. 1:693–702.Google Scholar
  4. Baylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860–865.CrossRefGoogle Scholar
  5. Bharti, K., Pandey, N., Shankhdhar, D, Srivastava, P.C., Shankhdhar, S.C. 2014. Effect of exogenous zinc supply on photosynthetic rate, chlorophyll content and some growth parameters in different wheat genotypes. Cereal Res. Commun. 42:589–600.CrossRefGoogle Scholar
  6. Broadly, M., Brown, P., Cakmak I., Rengel Z., Zhao F. 2012. Function of nutrients: micronutrients. In: Marschner, P. (ed.), Mineral Nutrition of Higher Plants. Third Ed. Academic Press. London, UK. pp. 206–212.Google Scholar
  7. Droppa, M., Horváth, G. 1990. The role of copper in photosynthesis. Critic. Rev. Plant Sci. 9:111–123.CrossRefGoogle Scholar
  8. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356.CrossRefGoogle Scholar
  9. Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Szepesi, Á., Gémes, K., Laskay, G., Erdei, L., Kolbert, Zs. 2013. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotox. Environ. Safety 94:179–189.CrossRefGoogle Scholar
  10. Franzen, D.W., McMullen, M.V., Mosset, D.S. 2008. Spring wheat and durum yield and disease responses to copper fertilization of mineral soils. Agron. J. 100:371–375.CrossRefGoogle Scholar
  11. Fuerhacker, M., Lorbeer, G., Haberl, R. 2003. Emission factors and sources of ethylene-diaminetetraacetic acid in waste water––a case study. Chemosphere 52:253–257.CrossRefGoogle Scholar
  12. Geebelen, W., Vangronsveld, J., Adriano, D.C., Van Poucke, L.C., Clijsters, H. 2002. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol. Plant. 115:377–384.CrossRefGoogle Scholar
  13. Gonzalez, D., Alvarez, J.M. 2013. Effects of copper chelates on lettuce response, leaching and soil status, soil fertility and plant nutrition. Soil Sci. Soc. Am. J. 77:546–557.CrossRefGoogle Scholar
  14. Győri, D. 1984. A talaj termékenysége (Soil fertility). In: Szabó, S.A., Regusiné, M., Csényi, Á., Győri, D. (eds), Mikroelemek a mezőgazdaságban (Microelements in Agriculture). Mezőgazdasági Kiadó. Budapest, Hungary. 235 p. (in Hungarian)Google Scholar
  15. Hong, P. A., Li, C., Banerji, S. K., Regmi, T. 1999. Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil. J. Soil Contam. 8:81–103.CrossRefGoogle Scholar
  16. Jiang, Z.F., Huang, S.Z., Han, Y.L., Zhao, J.Z., Fu, J.J. 2012. Physiological response of Cu and Cu mine tailing remediation of Paulownia fortunei (Seem) Hemsl. Ecotoxicology 21:759–767.CrossRefGoogle Scholar
  17. Lakanen, E., Erviö, R. 1971. A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agron. Fenn. 123:223–232.Google Scholar
  18. Luo, C., Shen, Z., Lou, L., Li, X. 2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ. Pollut. 144:862–871.CrossRefGoogle Scholar
  19. Marschner, H. 1995. Functions of mineral nutrients: micronutrients. In: Marschner, H. (ed.), Mineral Nutrition of Higher Plants. Second Ed. Academic Press. San Diego, USA. pp. 313–396.CrossRefGoogle Scholar
  20. Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. 2001. Nutrient uptake and assimilation. In: Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (eds), Principles of Plant Nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands. pp. 111–179.CrossRefGoogle Scholar
  21. Németh, T.K., Izsáki, Z. 2007. Effect of nutrient supply on the green mass, dry matter accumulation and nutrient uptake of silage sorghum (Sorghum bicolor L./Moench). Cereal Res. Commun. 35:841–844.CrossRefGoogle Scholar
  22. Ni, C.Y., Zeng, H., Jian, M.F., Zhu, D. 2009. Copper toxicity to Astragalus sinicus. Chinese J. Ecol. 4:0–13.Google Scholar
  23. Peek, M.S., Russek-Cohen, E., Wait, A.D., Forseth, I.N. 2002. Physiological response curve analysis using nonlinear mixed models. Oecologia 132:175–180.CrossRefGoogle Scholar
  24. Penney, D.C., Solberg, E.D., Evans, I.R., Piening, L.J. 1988. The copper fertility in Alberta soils. Great Plains Soil Fertility Workshop Proceedings, Vol. 2. Kansas State University. Manhatten, KS, USA. 66506.
  25. Poór, P., Gémes, K., Horváth, F., Szepesi, A., Simon, M. L., Tari, I. 2011. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. 13:105–114.CrossRefGoogle Scholar
  26. Puskás, I., Farsang, A. 2009. Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 148:267–281.CrossRefGoogle Scholar
  27. Regassa, T.H., Wortmann, C.S. 2014. Sweet sorghum as a bioenergy crop: Literature review. Biomass Bioenergy 64:348–355.CrossRefGoogle Scholar
  28. Szira, F., Monostori, I., Galiba, G., Rakszegi, M., Bálint, A.F. 2014. Micronutrient content and nutritional values of commercial wheat flours and flours of field grown wheat varieties. – A survey in Hungary. Cereal Res. Commun. 42:239–302.CrossRefGoogle Scholar
  29. Tari, I., Laskay, G., Takács, Z., Poór, P. 2013a. Response of sorghum to abiotic stresses: a review. J. Agron. Crop Sci. 199:264–274.CrossRefGoogle Scholar
  30. Tari, I., Poór, P., Ördög, A., Székely, Á., Laskay, G., Bagi, I. 2013b. Enhanced biomass production in sudangrass induced by co-treatment with copper and EDTA. Environ. Exp. Biol. 11:151–157.Google Scholar
  31. Wenzel, W.W., Unterbrunner, R., Sommer, P., Sacco, P. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96.CrossRefGoogle Scholar
  32. Wu, C., Luo Y., Zhang, L. 2010. Variability of copper availability in paddy felds in relation to selected soil properties in southeast China. Geoderma 156:200–206.CrossRefGoogle Scholar
  33. Xu, Y., Yamaji, N., Shen, R., Ma, J.F. 2007. Sorghum roots are inefficient in uptake of EDTA-chelated lead. Ann. Bot. 99:869–875.CrossRefGoogle Scholar
  34. Yruela, I. 2005. Copper in plants. Brazilian J. Plant Physiol. 17:145–156.CrossRefGoogle Scholar
  35. Yruela, I. 2009. Copper in plants: acquisition, transport and interactions. Funct. Plant Biol. 36:409–430.CrossRefGoogle Scholar
  36. Zhao, H.Q., Wang, L., Hong, J., Zhao, X.Y., Yu, X.H., Sheng, L., Hang, C.Z., Zhao, Y., Lin, A.A., Si, W.H., Hong, F.S. 2014. Oxidative stress of maize roots caused by a combination of both salt stress and manganese deprivation. Cereal Res. Commun. 42:568–577.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations