Antioxidant Capacity of Durum Wheat Large Flour Particles May Be Evaluated by QUENCHERABTS Assay by Adopting a Proper Calculation Mode

Abstract

Assessment of Antioxidant Capacity (AC) of foods is useful to consider cumulative/ synergistic action of all dietary antioxidants, thus providing a more integrated information than the simple sum of measurable antioxidants. Among the different AC assays, the QUENCHERABTS (QUick, Easy, New, CHEap and Reproducible) procedure is based on the direct reaction of ABTS•+ reagent with fine solid food particles without extraction of antioxidants. This assay is able to measure both soluble and insoluble antioxidants, that simultaneously come into contact with ABTS•+ molecules by either liquid-liquid or solid-liquid interactions, respectively. These interactions may change depending on the particle diameter. Usually, particles having 0.1–0.3 mm size are used. Here, AC was evaluated on whole flour (WF), derived from a mix of grains of ten durum wheat varieties, characterized by three different particle sizes: a smaller one, ≤0.2 mm (control, WF0.2), and two larger ones, ≤0.5 mm and ≤1 mm (WF0.5 and WF1, respectively). Moreover, a novel AC calculation procedure based on the slope value of the regression line of ABTS•+ response vs flour amount is presented in detail. The classical QUENCHERABTS procedure provided for WF0.2 an AC value of 42.0±2.7 μmol eq. Trolox/g d.w. A similar result was obtained for WF0.5 (38.3±0.9 μmol eq. Trolox/g d.w.), thus indicating that these large particles may be analyzed by the QUENCHERABTS assay provided that the “slope” calculation procedure is used. On the contrary, WF1 showed about half AC (20.3±0.2 μmol eq. Trolox/g d.w.), thus showing that very large particles cannot be used even adopting the “slope” calculation.

Abbreviations

ABTS:

2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

AC:

antioxidant capacity

d.w.:

dry weight

f.w.:

fresh weight

QUENCHER:

QUick, Easy, New, CHEap and Reproducible

Trolox:

±-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid

WF:

whole flour

References

  1. Acar, O.C., Gökmen, V., Pellegrini N., Fogliano, V. 2009. Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur. Food Res. Technol. 229:961–969.

    CAS  Article  Google Scholar 

  2. Amigo-Benavent, M., del Castillo M.D., Fogliano, V. 2010. Are the major antioxidants derived from soy protein and fructo-oligosaccharides model systems colored aqueous soluble or insoluble compounds? Eur. Food Res. Technol. 231:545–553.

    CAS  Article  Google Scholar 

  3. Cai, L., Choi, I., Hyun, J.N., Jeong, Y.K., Baik, B.K. 2014. Influence of bran particle size on bread-baking quality of whole grain wheat flour and starch retrogradation. Cereal Chem. 91:65–71.

    CAS  Article  Google Scholar 

  4. Carocho, M., Ferreira, I.C.F.R. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51:15–25.

    CAS  Article  Google Scholar 

  5. Chen, J.S., Fei, M.J., Shi, C.L., Tian, J.C., Sun, C.L., Zhang, H., Ma, Z., Dong, H.X. 2011. Effect of particle size and addition level of wheat bran on quality of dry white Chinese noodles. J. Cereal Sci. 53:217–224.

    Article  Google Scholar 

  6. Chen, P.X., Tang, Y., Zhang, B., Liu, R., Marcone, M.F., Xihong, L., Tsao, R. 2014. 5-hydroxymethyl-2-furfural and derivatives formed during acid hydrolysis of conjugated and bound phenolics in plant foods and the effects on phenolic content and antioxidant capacity. J. Agric. Food Chem. 62:4754–4761.

    CAS  Article  Google Scholar 

  7. Ciesarova, Z., Kukurova, K., Bednarikova, A., Morales, F.J. 2009. Effect of heat treatment and dough formulation on the formation of Maillard reaction products in fine bakery products-benefits and weak points. J. Food Nutr. Res. 48:20–30.

    CAS  Google Scholar 

  8. Delgado-Andrade C., Conde-Aguilera J.A., Haro A., Pastoriza de la Cueva S., Rufian-Henares J.A. 2010. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 52:239–246.

    CAS  Article  Google Scholar 

  9. Devaux, M.F., Le Deschault de Monredon, F., Guibert, D., Novales, B., Abecassis, J. 1998. Particle size distribution of break, sizing and middling wheat flours by laser diffraction. J. Sci. Food Agric. 78:237–244.

    CAS  Article  Google Scholar 

  10. Gökmen, V., Serpen, A., Fogliano, V. 2009. Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci. Tech. 20:278–288.

    Article  Google Scholar 

  11. Gong, L., Jin, C., Wu, X., Zhang, Y. 2013. Relationship between total antioxidant capacities of cereals measured before and after in vitro digestion. Int. J. Food Sci. Nutr. 64:850–856.

    CAS  Article  Google Scholar 

  12. Kraujalis, P., Venskutonis, P.R., Kraujalienė, V., Pukalskas, A. 2013. Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum. Nutr. 68:322–328.

    CAS  Article  Google Scholar 

  13. Laus, M.N., Di Benedetto, N.A., Caporizzi, R., Tozzi, D., Soccio, M., Giuzio, L., De Vita, P., Flagella, Z., Pastore, D. 2015. Evaluation of phenolic antioxidant capacity in grains of modern and old durum wheat genotypes by the novel QUENCHERABTS approach. Plant Foods Hum. Nutr. DOI: 10.1007/s11130-015-0483-8, in press.

  14. Laus, M.N., Soccio, M., Pastore, D. 2013. Evaluation of synergistic interactions of antioxidants from plant foods by a new method using soybean lipoxygenase. J. Food Nutr. Res. 52:256–260.

    CAS  Google Scholar 

  15. Laus, M.N., Tozzi, D., Soccio, M., Fratianni, A., Panfili, G., Pastore, D. 2012. Dissection of antioxidant activity of durum wheat (Triticum durum Desf.) grains as evaluated by the new LOX/RNO method. J. Cereal Sci. 56:214–222.

    CAS  Article  Google Scholar 

  16. Magalhaes, L.M., Segundo, M.A., Reis, S., Lima, J.L.F.C. 2008. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 613:1–19.

    CAS  Article  Google Scholar 

  17. Noort, M.W.J., van Haaster, D., Hemery, Y., Schols, H.A., Hamer, R.J. 2010. The effect of particle size of wheat bran fractions on bread quality - Evidence for fibre-protein interactions. J. Cereal Sci. 52:59–64.

    CAS  Article  Google Scholar 

  18. Pastore, D., Laus, M.N., Tozzi, D., Fogliano, V., Soccio, M., Flagella, Z. 2009. New tool to evaluate a comprehensive antioxidant activity in food extracts: bleaching of 4-nitroso-N,N-dimethylaniline catalyzed by soybean lipoxygenase-1. J. Agric. Food Chem. 57:9682–9692.

    CAS  Article  Google Scholar 

  19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231–1237.

    CAS  Article  Google Scholar 

  20. Rufian-Henares, J.A., Delgado-Andrade, C. 2009. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res. Int. 42:394–400.

    CAS  Article  Google Scholar 

  21. Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. 2007. A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem. 55:7676–7681.

    CAS  Article  Google Scholar 

  22. Serpen, A., Gökmen, V. 2009. Evaluation of the Maillard reaction in potato crisps by acrylamide, antioxidant capacity and color. J. Food Compos. Anal. 22:589–595.

    CAS  Article  Google Scholar 

  23. Serpen, A., Gökmen, V., Fogliano, V. 2012a. Solvent effects on total antioxidant capacity of foods measured by direct QUENCHER procedure. J. Food Compos. Anal. 26:52–57.

    CAS  Article  Google Scholar 

  24. Serpen, A., Gökmen, V., Fogliano, V. 2012b. Total antioxidant capacities of raw and cooked meats. Meat Sci. 90:60–65.

    CAS  Article  Google Scholar 

  25. Serpen, A., Gökmen, V., Mogol, B.A. 2012c. Effects of different grain mixtures on Maillard reaction products and total antioxidant capacities of breads. J. Food Compos. Anal. 26:160–168.

    CAS  Article  Google Scholar 

  26. Serpen, A., Gökmen, V., Pellegrini, N., Fogliano, V. 2008. Direct measurement of the total antioxidant capacity of cereal products. J. Cereal Sci. 48:816–820.

    CAS  Article  Google Scholar 

  27. Stewart, M.L., Slavin, J.L. 2009. Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. Brit. J. Nutr. 102:1404–1407.

    CAS  Article  Google Scholar 

  28. Tufan, A.N., Celik, S.E., Ozyurek, M., Guclu, K., Apak, R. 2013. Direct measurement of total antioxidant capacity of cereals: QUENCHER-CUPRAC method. Talanta 108:136–142.

    CAS  Article  Google Scholar 

  29. Žilić, S., Akillioglu, H.G., Serpen, A., Peric, V., Gökmen, V. 2013. Comparison of phenolic compounds, isoflavones, antioxidant capacity and oxidative enzymes in yellow and black soybeans seed coat and dehulled bean. Eur. Food Res. Technol. 237:409–418.

    Article  Google Scholar 

  30. Žilić, S., Serpen, A., Akıllıoglu, G., Jankovic, M., Gökmen, V. 2012. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and debranned flour. J. Cereal Sci. 56:652–658.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the MiUR project PON 01_01145 (ISCOCEM) and the integrated project on durum wheat chain PIF FRUDUFIL coordinated by Prof. Flagella.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Flagella.

Additional information

Communicated by X.F. Zhang

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Benedetto, N.A., Alfarano, M., Laus, M.N. et al. Antioxidant Capacity of Durum Wheat Large Flour Particles May Be Evaluated by QUENCHERABTS Assay by Adopting a Proper Calculation Mode. CEREAL RESEARCH COMMUNICATIONS 43, 682–691 (2015). https://doi.org/10.1556/0806.43.2015.027

Download citation

Keywords

  • antioxidant capacity
  • QUENCHERABTS
  • durum wheat grains
  • particle size