Advertisement

Cereal Research Communications

, Volume 43, Issue 4, pp 627–637 | Cite as

Correlation between Fusarium graminearum and Deoxynivalenol during the 2012/13 Wheat Fusarium Head Blight Outbreak in Argentina

  • J. PalazziniEmail author
  • V. Fumero
  • N. Yerkovich
  • G. Barros
  • M. Cuniberti
  • S. Chulze
Pathology

Abstract

Fusarium graminearum (Schwabe) is reported as the main causal agent of Fusarium head blight in Argentina. The disease causes great losses in humid and semi-humid regions of the world, reducing grain yield and quality. During 2012/13 harvest season, a severe epidemic occurred in Argentina. The aims of this work were to determine the F. graminearum incidence and deoxynivalenol accumulation in wheat grain and flour samples obtained from two of the main wheat growing regions from Argentina. Levels of the pathogen and deoxynivalenol content were correlated in heads, grains and flour. Out of 69 wheat grain samples, 55 (79.7%) showed deoxynivalenol levels between 0.4 and 8.5 μg/kg. Fusarium graminearum was the main species isolated, the isolation frequency ranged from 30 to 52% of the total grains analyzed. Correlations were observed between deoxynivalenol content, % of F. graminearum infection, presence of the pathogen in heads, grain and flour.

Keywords

Fusarium graminearum deoxynivalenol Fusarium head blight quantitative PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by a grant from SECYT-UNRC, PICT 2012-1436 and PIP 112-201101-00297 CONICET.

References

  1. Alvarez, C., Somma, S., Proctor, R., Stea, G., Mulé, G., Logrieco, A., Fernandez Pinto, V., Moretti, A. 2011. Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Toxins 3:1294–1309.CrossRefGoogle Scholar
  2. Banchero, E., Miguel, M., Godoy, H., Di Giulio, A., Dubois, M., Souto, G., Gomez, M., Resnik, F., Torres, M. 1987. Evaluación de la presencia de Fusarium y de micotoxinas en muestras de trigo de la campaña 1985/86 y su relación con la calidad comercial (Evaluation of Fusarium and Mycotoxins during 1985/86 Wheat Campaign and their Relationship with Commercial Quality). Publicación Gerencia Técnica, Junta Nacional de Granos, Argentina. (in Spanish)Google Scholar
  3. Beyer, M., Klix, M.B., Verreet, J. 2007. Estimating mycotoxin contents of Fusarium-damaged winter wheat kernels. International Journal of Food Microbiology 119(13):153–158.CrossRefGoogle Scholar
  4. Champeil, A., Doré, T., Fourbet, J.F. 2004. Fusarium head blight: epidemiological origin of the effecs of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Science 166:1389–1415.CrossRefGoogle Scholar
  5. Dalcero, A., Torres, A., Etcheverry, M., Chulze, S., Varsavsky, E. 1997. Occurrence of deoxynivalenol and Fusarium graminearum in Argentinian wheat. Food Additives and Contaminants 14:11–14CrossRefGoogle Scholar
  6. Del Ponte, E., Garda-Buffon, J., Badiale-Furlong, E. 2012. Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chemistry 132:1087–1091.CrossRefGoogle Scholar
  7. EC 2007. Commission Regulation (EC) Nº 1126/2007. Setting maximum level for certain contamination in foodstuffs. Official Journal of the European Union 255:14–17.Google Scholar
  8. FAO 2014. World Food Situation. http://www.fao.org/worldfoodsituation/csdb/en/
  9. Kikot, G.E., Moschini, R., Consolo, V., Rojo, R., Salerno, G., Hours, R.A., Gasoni, L., Arambarri, A., Alconada, T. 2011. Occurrence of different species of Fusarium from wheat in relation to disease levels predicted by a weather-based model in Argentina Pampas region. Mycopathologia 171:139–149.CrossRefGoogle Scholar
  10. Klerks, M., Zijlstra, C., Van Bruggen, A. 2004. Comparison of real-time PCR methods for detection of Salmonella enterica and Escherichia coli O157:H7, and introduction of a general internal amplification control. Journal of Microbiological Methods 59:337–349.CrossRefGoogle Scholar
  11. Klosterman, S. 2012. Real-Time PCR for the Quantification of Fungi In Planta. In: Bolton, M., Thomma, B. (eds.) Plant Fungal Pathogens. Springer Science, London, pp. 121–132.CrossRefGoogle Scholar
  12. Leslie, J.F., Summerell, B.A. 2006. The Fusarium Laboratory Manual, Blackwell Professional, Ames, Iowa, pp. 371.CrossRefGoogle Scholar
  13. Lori, G., Sisterna, M., Haidukowski, M., Rizzo, I. 2003. Fusarium graminearum and deoxynivalenol contamination in the durum wheat area in Argentina. Microbiological Research 158:29–35.CrossRefGoogle Scholar
  14. Malmann, C., Dilkin, M., Mürman, L., Dilkin, P., Almeida, C. 2003. Evaluation of deoxynivalenol contamination in wheat utilized for human consumption. I Pharmacy Brazilian Congress, Sao Paulo, Brazil. Available at: http://www.lamic.ufsm.br/papers/2a.pdf (in Portuguese)
  15. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., Van Sanford, D. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease 96(12):1712–1727.CrossRefGoogle Scholar
  16. Minagri 2013. Bread wheat report. Farming, Cattle Raising and Fishing Ministry, Argentina. http://www.mina-gri.gob.ar/dimeagro/granos/inf-trigo-candeal/trigo_candeal.php
  17. Moschini, R.C., Fortugno, C. 1996. Predicting wheat head blight incidence using models based on meteorological factors in Pergamino, Argentina. European Journal of Plant Pathology 102:211–218.CrossRefGoogle Scholar
  18. Moschini, R.C., Galich, M.T.V. de, Annone, J.G., Polidoro, O. 2002. Enfoque fundamental-empírico para estimar la evolución del índice de Fusarium en Trigo (Fundamental-Empirical approach to estimate Fusarium index in wheat). RIA Journal 31:39–53. (in Spanish)Google Scholar
  19. Moschini, R., Martínez, M., Cazenave, G. 2013. Estimación de la distribución espacial de la incidencia de la FET en la región pampeana para la campaña 2012/13 (Estimation of spatial distribution of FHB incidence in Pampa´s región during 2012/13 wheat campaign. Argentina). Miscelaneous 125:63–67. (in Spanish)Google Scholar
  20. Nicholson, P., Simpson, D., Weston, H., Rezanoor, H., Lees, A., Parry, D., Joyce, D. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology 53:17–37.CrossRefGoogle Scholar
  21. O’Donnell, K., Kistler, H.C., Tacke, B.K., Casper, H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the Natural Academy Science, USA 97:7905–7910.CrossRefGoogle Scholar
  22. O´Donnell, K., Ward, T., Geiser, D., Kistler, H., Aoki, T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41:600–623.CrossRefGoogle Scholar
  23. O’Donnell, K., Ward, T.J., Aberra, D., Kistler, H.C., Aoki, T., Orwig, N., Kimura, M., Bjørnstad, Å., Klemsdal, S. 2008. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology 45:1514–1522.CrossRefGoogle Scholar
  24. Osborne, L., Stein, J. 2007. Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology 119:103–108.CrossRefGoogle Scholar
  25. Palazzini, J., Fumero, V., Barros, G., Cuniberti, M., Chulze, S. 2013. Fusarium graminearum y deoxinivalenol en espigas de trigo, granos y subproductos: efecto sobre la calidad e inocuidad. II Workshop Internacional de Ecofisiologia de Cultivos, Mar del Plata, Argentina (Fusarium graminearum and deoxinyvalenol in wheat spikes, grains and flour in Argentina: effect on food safety and quality of wheat grains and byproducts). II International Workshop on Ecophysiology. Mar del Plata, Argentina, p. 26. (in Spanish)Google Scholar
  26. Paul, P., Lipps, P., Madden, L. 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol content in harvest what grain: a meta-analysis. Phytopathology 95:1225–1236.CrossRefGoogle Scholar
  27. Pereyra, S. 2003. Prácticas culturales para el manejo de la fusariosis de la espiga (Cultural practices in Fusarium Head Blight management). In: Winter Crops Conferences, Uruguay. Diffusion Journal 312:1–9. (in Spanish)Google Scholar
  28. Pestka, J. 2007. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Animal Feed Science and Technology 137:283–298.CrossRefGoogle Scholar
  29. Pestka, J. 2010. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin Journal 3:323–347.CrossRefGoogle Scholar
  30. Quiroga, N., Resnik, S., Pacin, A., Martínez, E., Pagano, A., Riccobene, I., Neira, S. 1995. Natural occurrence of trichothecenes and zearalenone in Argentinean wheat. Food Control 6:201–204CrossRefGoogle Scholar
  31. Ramirez, M.L., Reynoso, M.M., Farnochi, M.C, Torres, A., Leslie, J., Chulze, S. 2007. Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Additives and Contaminants 24:1115–1120.CrossRefGoogle Scholar
  32. Reischer, G., Lemmens, M., Farnleitner, A., Adler, A., Mach, R. 2004. Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. Journal of Microbiological Methods 59:141–146.CrossRefGoogle Scholar
  33. Sarver, B., Ward, T., Gale, L., Broz, K., Kistler, C., Aoki, T., Nicholson, P., Carter, J., O´Donell, K. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology 48:1096–1107.CrossRefGoogle Scholar
  34. Stack, R., McMullen, M. 1995. A visual scale to estimate severity of Fusarium head blight of wheat. N. D. State Univ. Ext. Serv. Bull. pp. 1095.Google Scholar
  35. Starkey, D.E., Ward, T.J., Aoki, T., Gale, L.G., Kistler, H., Geiser, M., Suga, H., Tóth, B., Varga, J., O´Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 12:1745–1776.Google Scholar
  36. Umpiérrez, M., Garmendia, G., Cabrera, M., Pereyra, S., Vero, S. 2013. Diversity of pathogen populations causing Fusarium head blight of wheat in Uruguay. In: Alconada, T., Chulze, S. (eds.) Fusarium Head Blight in Latin America. Springer Science, Amsterdam, The Netherlands, pp. 15–29.Google Scholar
  37. Waalwijk, C., Kastelein, P., De Vries, P., Kerenyi, Z., Van der Lee, T., Hesselink, T., Köhl, J., Kema, G. 2003. Major changes in Fusarium spp. in wheat in the Netherlands. European Journal of Plant Pathology 109:743–754.CrossRefGoogle Scholar
  38. Waalwijk, C., Van der Heide, R., De Vries, P., Van der Lee, T., Schoen, C., Costrel-de Corainville, G., Hauser-Hahn, I., Kastelein, P., Köhl, J., Lonnet, P., Demarquet, T., Kema, G. 2004. Quantitative detection of Fusarium species in wheat using TaqMan. European Journal of Plant Pathology 110:481–494.CrossRefGoogle Scholar
  39. Waalwijk, C., Koch, S., Ncube, E., Allwood, J., Flett, B., de Vries, I., Kema, G. 2008. Quantitative detection of Fusarium spp. and its correlation with fumonisin content in maize from South African subsistence farmers. World Mycotoxin Journal 1:39–47.Google Scholar
  40. WHO 2001 (World Health Organization). Deoxynivalenol. In: WHO Food Additives Series 47. FAO Food and Nutrition Paper 74, Geneva, pp. 419–556.Google Scholar
  41. Yli-Mattila, T., Gagkaeva, T., Ward, T.J., Aoki, T., Kistler, H.C., O’Donnell, K. 2009. A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841–852.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

Authors and Affiliations

  • J. Palazzini
    • 1
    Email author
  • V. Fumero
    • 1
  • N. Yerkovich
    • 1
  • G. Barros
    • 1
  • M. Cuniberti
    • 2
  • S. Chulze
    • 1
  1. 1.Facultad de Ciencias Exactas Físico Químicas y Naturales, Departamento de Microbiología e InmunologíaUniversidad Nacional de Río CuartoRío CuartoArgentina
  2. 2.Wheat and Soybean Quality Lab. INTA-EEA Marcos JuárezMarcos Juárez, CórdobaArgentina

Personalised recommendations