Cereal Research Communications

, Volume 43, Issue 4, pp 567–578 | Cite as

Genetic Variability and Inter-relationship of Kernel Carotenoids among Indigenous and Exotic Maize (Zea mays L.) Inbreds

  • V. Muthusamy
  • F. Hossain
  • N. Thirunavukkarasu
  • S. Saha
  • P. K. Agrawal
  • S. K. Guleria
  • H. S. GuptaEmail author


Carotenoids play vital role in growth and development of human beings. Yellow maize kernel contains carotenoids that possess provitamin A and antioxidant activity. Multilocation based analyses of 105 maize inbreds of indigenous and exotic origin revealed wide genetic variation for lutein (0.2–11.3 μg/g), zeaxanthin (0.2–20.0 μg/g) and β-carotene (0.0–15.0 μg/g). For β-cryptoxanthin, low variation (0.1–3.3 μg/g) was observed. Carotenoids were quite stable over environments that played minor role in causing variation. The heritability (>90%) and genetic advance (>75%) were high for all the carotenoid components. Zeaxanthin showed positive correlation with lutein and β-cryptoxanthin, while β-carotene, the major provitamin A carotenoid, did not show correlation with other carotenoids. Kernel colour was positively correlated with lutein (0.25), zeaxanthin (0.47) and β-cryptoxanthin (0.44), but not with β-carotene (0.04). This suggested that visual selection based on kernel colour will be misleading in selecting provitamin A-rich genotypes. Inbreds with provitamin A and non-provitamin A carotenoids identified in the present study will help in development of biofortified maize hybrids.


maize carotenoids variability provitamin A antioxidants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



MV sincerely acknowledges the Indian Council of Agricultural Research (ICAR) for providing Senior Research Fellowship for his doctoral research. The financial support from Department of Biotechnology (DBT) under the project ‘Development of micronutrient enriched maize through molecular breeding’ (SAN No.102/IFD/SAN/4455/2011-2012) is gratefully acknowledged. The authors thank Dr. Kevin Pixley (CIMMYT-HarvestPlus Programme) for providing β-carotene rich lines used in the study. We also thank the breeders from AICMIP, India for sharing the inbred lines.


  1. Aluru, M., Xu, Y., Guo, R., Wang, Z., Li, S., White, W., Wang, K., Roderme, S. 2008. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 59:3551–3562.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Babu, R., Rojas, N.P., Gao, S., Yan, J., Pixley, K. 2013. Validation of the effects of molecular marker polymorphisms in lcyE and crtRB1 on provitamin A concentrations for 26 tropical maize populations. Theor. Appl. Genet. 126:389–399.CrossRefGoogle Scholar
  3. Black, R.E., Allen, L.H., Bhutta, Z.A., Caulfield, L.E., de Onis, M., Ezzati, M., Mathers, C., Rivera, J., Maternal Child Under Nutrition Study Group. 2008. Maternal and child under nutrition: global and regional exposures and health consequences. Lancet 371:243–260.CrossRefGoogle Scholar
  4. Bouis, H.E., Welch, R.M. 2010. Biofortification – a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50:S20–S32.CrossRefGoogle Scholar
  5. Buckner, B., Kelson, T.L., Robertson, D.S. 1990. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell 2:867–876.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chander, S., Meng, Y., Zhang, Y., Yan, J., Li, J. 2008. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J. Agric. Food Chem. 56:6506–6511.PubMedCrossRefGoogle Scholar
  7. Dauchet, L., Amouyel, P., Dallongeville, J. 2009. Fruits, vegetables and coronary heart disease. Nat. Rev. Cardiol. 6:599–608.CrossRefGoogle Scholar
  8. DellaPenna, D., Pogson, B.J. 2006. Vitamin synthesis in plants: Tocopherols and carotenoids. Ann. Rev. Plant Biol. 57:711–738.CrossRefGoogle Scholar
  9. Egesel, C.O., Wong, J.C., Lambert, R.J., Rocheford, T.R. 2003. Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci. 43:818–823.CrossRefGoogle Scholar
  10. Frano, M.R.L., de Moura, F.F., Boy, E., Lonnerdal, B., Burri, B.J. 2014. Bioavailability of iron, zinc, and provitamin A in biofortified staple crops. Nut. Rev. 72:289–307.CrossRefGoogle Scholar
  11. Fraser, B.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Res. 43:228–265.CrossRefGoogle Scholar
  12. Galobart, J., Sala, R., Rincon-Carruyo, X., Manzanilla, E.G., Vila, B., Gasa, J. 2004. Egg yolk color as affected by saponification of different natural pigmenting sources. J. Appl. Poult. Res. 13:328–334.CrossRefGoogle Scholar
  13. Gupta, H.S., Babu, R., Agrawal, P.K., Mahajan, V., Hossain, F., Nepolean, T. 2013. Accelerated development of quality protein maize hybrid through marker-assisted introgression of opaque-2 allele. Plant Breeding 132:77–82.CrossRefGoogle Scholar
  14. Harjes, C.E., Rocheford, T.R., Bai, L., Brutnell, T.P., Kandianis, C.B., Sowinski, S.G., Stapleton, A.E., Vallabhaneni, R., Williams, M., Wurtzel, E.T., Yan, J., Buckler, E.S. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hess, S.Y., Thurnham, D.I., Hurrell, R.F. 2005. Influence of provitamin A carotenoids on iron, zinc, and vitamin A status. HarvestPlus Technical Monograph 6. HarvestPlus. Washington, DC, USA. 28 p.Google Scholar
  16. Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and functions in seeds and non-green tissues. Plant, Cell Env. 29:435–445.CrossRefGoogle Scholar
  17. Johnson, M.P., Havaux, M., Triantaphylides, C., Ksas, B., Pascal, A.A., Robert, B., Davison, P.A., Ruban, A.V., Horton, P. 2007. Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photooxidative stress by a lipid-protective, antioxidant mechanism. J. Biol. Chem. 282:22605–22618.PubMedCrossRefGoogle Scholar
  18. Kurilich, A., Juvik, J. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 47:1948–1955.PubMedCrossRefGoogle Scholar
  19. Liu, Y.Q., Davis, C.R., Schmaelzle, S.T., Rocheford, T., Cook, M.E., Tanumihardjo, S.A. 2012. β-Cryptoxanthin biofortified maize (Zea mays) increases β-cryptoxanthin concentration and enhances the color of chicken egg yolk. Poultry Sci. 91:432–438.CrossRefGoogle Scholar
  20. Lokaewmanee, K., Yamauchi, K., Tsutomu, K., Saito, K. 2010. Effects on egg yolk color of paprika or paprika combined with marigold flower extracts. Ital. J. Anim. Sci. 9:356–359.CrossRefGoogle Scholar
  21. Mendis, S., Lindholm, L.H., Anderson, S.G., Alwan, A., Koju, R., Onwubere, B.J., Kayani, A.M., Abeysinghe, N., Duneas, A., Tabagari, S., Fan, W., Sarraf-Zadegan, N., Nordet, P., Whitworth, J., Heagerty, A. 2011. Total cardiovascular risk approach to improve efficiency of cardiovascular prevention in resource constrain settings. J. Clin. Epidemiol. 64:1451–1462.PubMedCrossRefGoogle Scholar
  22. Menkir, A., Liu, W., White, W.S., Maziya-Dixon, B., Rocheford, T. 2008. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 109:521–529.CrossRefGoogle Scholar
  23. Menkir, A., Maziya-Dixon, B. 2004. Influence of genotype and environment on β-carotene content on tropical yellow endosperm maize genotypes. Maydica 49:313–318.Google Scholar
  24. Mishra, P., Singh, N.K. 2010. Spectrophotometric and TLC based characterization of kernel carotenoids in short duration maize. Maydica 55:95–100.Google Scholar
  25. Nambara, E., Marion-Poll, A. 2005. Abscisic acid biosynthesis and catabolism. Ann. Rev. Plant Biol. 56:165–185.CrossRefGoogle Scholar
  26. Olson, J.A. 1989. Biological actions of carotenoids. J. of Nutrition 119:94–95.CrossRefGoogle Scholar
  27. Pfeiffer, W.H., McClafferty, B. 2007. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 47:S88–S105.CrossRefGoogle Scholar
  28. Pixley, K.V., Palacios, N., Glahn, R.P. 2011. The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Res. 123:153–160.CrossRefGoogle Scholar
  29. Prasanna, B.M., Pixley, K.V., Warburton, M., Xie, C. 2010. Molecular marker-assisted breeding for maize improvement in Asia. Mol. Breed. 26:339–356.CrossRefGoogle Scholar
  30. Quackenbush, F.W. 1963. Corn carotenoids: effects of temperature and moisture on losses during storage. Cereal Chem. 40:266–269.Google Scholar
  31. SAS Institute Inc. 2005. SAS/Genetics TM 9.1.3 User’s Guide. SAS Institute Inc. Cary, NC, USA.Google Scholar
  32. Rosegrant, M.R., Ringler, C., Sulser, T.B., Ewing, M., Palazzo, A., Zhu, T. 2009. Agriculture and Food Security under Global Change: Prospects for 2025/2050. IFPRI. Washington, D.C., USA.Google Scholar
  33. Shiferaw, B., Prasanna, B.M., Hellin, J., Banziger, M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3:307–327.Google Scholar
  34. Singh, R.K., Chaudhary, B.D. 1985. Biometrical methods in quantitative genetic analysis, Kalyani Publishers. New Delhi, India.Google Scholar
  35. Sivaranjani, R., Prasanna, B.M., Hossain, F., Santha, I.M. 2013. Genetic variability for total carotenoid concentration in selected maize inbred lines. Indian J. Agr. Sci. 83:431–436.Google Scholar
  36. Sivaranjani, R., Santha, I.M., Pandey, N., Vishwakarma, A.K., Nepolean, T., Hossain, F. 2014. Microsatellite-based genetic diversity in selected exotic and indigenous maize (Zea mays L.) inbred lines differing in total kernel carotenoids. Indian J. Genet. 74:34–41.Google Scholar
  37. Tanumihardjo, S.A., Anderson, C., Kaufer-Horwitz, M., Bode, L., Emenaker, N.J., Haqq, A.M., Satia, J.A., Silver, H., Stadler, D.D. 2007. Poverty, obesity and malnutrition: an international perspective recognizing the paradox. J. Am. Diet. Assoc. 107:1966–1972.PubMedCrossRefGoogle Scholar
  38. Tiwari, A., Prasanna, B.M., Hossain, F., Guruprasad, K.N. 2012. Analysis of genetic variability for kernel carotenoid concentration in selected maize inbred lines. Indian J. Genet. 72:1–6.Google Scholar
  39. Vallabhaneni, R., Gallagher, C.E., Licciardello, N., Cuttriss, A.J., Quinlan, R.F., Wurtzel, E.T. 2009. Metabolite sorting of a germplasm collection reveals the hydroxylase3 locus as a new target for maize provitamin: A biofortification. Plant Physiol. 151:1635–1645.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Vignesh, M., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K., Prasanna, B.M., Gupta, H.S. 2012. Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet. 72:189–194.Google Scholar
  41. WHO 2009. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. ( A deficiency) Wong, J.C., Lambert, R.J., Wurtzel, E.T., Rocheford, T.R. 2004. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108:349–359.Google Scholar
  42. Yan, J., Kandianis, B.C., Harjes, E.C., Bai, L., Kim, H.E., Yang, X., Skinner, D.J., Fu, Z., Mitchell, S., Li, Q., Fernandez, G.S.M., Zaharoeva, M., Babu, R., Fu, Y., Palacios, N., Li, J., DellaPenna, D., Brutnell, T., Buckler, S.E., Warburton, L.M., Rocheford, T. 2010. Rare genetic variation at Zea mays crtRB1 increases beta carotene in maize grain. Nat. Genet. 42:322–327.CrossRefGoogle Scholar
  43. Zhang, X., Pfeiffer, W.H., Palacios-Rojas, N., Babu, R., Bouis, H., Wang, J. 2012. Probability of success of breeding strategies for improving provitamin A content in maize. Theor. Appl. Genet. 125:235–246.PubMedCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

Authors and Affiliations

  • V. Muthusamy
    • 1
  • F. Hossain
    • 1
  • N. Thirunavukkarasu
    • 1
  • S. Saha
    • 1
  • P. K. Agrawal
    • 2
  • S. K. Guleria
    • 3
  • H. S. Gupta
    • 1
    • 4
    Email author
  1. 1.ICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS)AlmoraIndia
  3. 3.C.S.K. Himachal Pradesh Krishi Viswavidyalaya (CSK-HPKV)Bajaura CentreIndia
  4. 4.Borlaug Institute for South Asia (BISA)New DelhiIndia

Personalised recommendations