Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 4, pp 481–492 | Cite as

Effects of Drought Stress on Hybrids of Vigna radiata at Germination Stage

  • Shehzadi Saima
  • Guishuang Li
  • Guang WuEmail author
Article
  • 3 Downloads

Abstract

Drought is one the critical abiotic factors that reduces the germination, growth and yield of crops. Therefore the present project was designed with the objective to screen the best drought tolerant hybrid of Vigna radiata. Genetic variations for drought tolerance among these hybrids were assessed by simple and efficient technique. Seven hybrids of V. radiata (9801, 7002, 9706, 08003, 07007, 97012 and 08007) were used for screening against three levels of drought stress (zero, control), 5% (-0.05 MPa) and 10% (-0.1 MPa) induced by Polyethyleneglycol (PEG6000). A. higher proline content was observed in 07007 (6.10 μg/g fresh weight) as compared to all other hybrids. Treated seedlings of each hybrid were com-pared with their respective control to evaluate the differences in their growth under drought. Different parameters such as percentage of germination, germination stress tolerance index (GSI), shoot and root weights (bath fresh and dry) and lengths, root length stress index (RLSI), dry matter stress index (DMSI) and plant height stress index (PHSI) showed considerable variations. Germination percentage, shoot weights, PHSI and DMSI decreased in all hybrids along with the increase of PEG induced drought stress (5% and 10% PEG). In contrary, root weights and RLSI were increased under drought. Overall 07007 showed a better performance, and can therefore be classified as a drought tolerant hybrid.

Keywords

Water stress germination stress tolerance index PEG legumes dry matter stress index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdoli, M., Saeidi, M. (2012) Effects of water deficiency stress during seed growth on yield and its components, germination and seedling growth parameters of some wheat cultivars. Intl. J. Agri. Crop Sci. 4, 1110–1118.Google Scholar
  2. 2.
    Agili, S., Nyende, B., Ngamau, K., Masinde, P. (2012) Selection, yield evaluation, drought tolerance indices of orange-flesh sweet potato (Ipomoea batatas Lam) Hybrid clone. Nutr. Food Sci. 2, 138.Google Scholar
  3. 3.
    Ahmad, S., Ahmad, R., Ashraf M. Y., Ashraf M., Waraich, E. A. (2009) Sunflower (Helianthus annuus L.) response to drought stress at germination and growth stages. Pak. J. Bot. 41, 647–654.Google Scholar
  4. 4.
    Anupamaa, A., Bhugrab, S., Lallb, B., Chaudhury, S., Chugh, A. (2018) Assessing the correlation of genotypic and phenotypic responses of rice varieties under drought stress. Plant Physiol. Biochem. 127, 343-354Google Scholar
  5. 5.
    Ashraf, M., Bokhari, H., Cristiti, S. N. (1992) Variation in osmotic adjustment of lentil (Lens culinaris Medic) in response to drought. Acta Bot. Neerl. 41, 51–62.CrossRefGoogle Scholar
  6. 6.
    Ashraf, M. Y., Akhtar, K., Hussain, F., Iqbal, J. (2006) Screening of different accessions of three potential grass species from Cholistan desert for salt tolerance. Pak. J. Bot. 38, 1589–1597.Google Scholar
  7. 7.
    Avramova, V., Abd-Elgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., Beemster, G. T. S. (2015) Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 169, 1382–1396.CrossRefGoogle Scholar
  8. 8.
    Badiane, F. A., Diouf D., Sane, D., Diouf O., Goudiaby, V., Diallo, N. (2004) Screening cowpea [Vigna unguiculata (L.) Walp.] varieties by inducing water deficit and RAPD analyses. Aft J. Biotechnol. 3, 174–178.Google Scholar
  9. 9.
    Bashir, N., Mahmood, S., Zafar, Z. A., Rasul, S., Manzoor, H., Athar, H. R. (2016) Is drought tolerance in maize (Zea mays L.) cultivars at the juvenile stage maintained at the reproductive stage? Pak. J. Bot. 48, 1385–1392.Google Scholar
  10. 10.
    Bates, L. S., Waldrem, R. P., Teare, I. D. (1972) Report of determination of free proline in water stress studies. Plant and Soil 39, 205–208.CrossRefGoogle Scholar
  11. 11.
    Batool, N., Ilyas, N., Noor, T., Saeed, M., Mazhar, R., Bibi, E., Shahzad, A. (2014) Evaluation of drought stress effects on germination and seedling growth of Zea mays L. Int. J. Biosci. 5, 203–209.Google Scholar
  12. 12.
    Bibi, A., Sadaqat, H. A., Tahir, M. H. N., Akram, H. M. (2012) Screening of Sorghum bicolor Var Moench for drought tolerance at seedling stage in polyethyleneglycol. J. Animal Plant Sci. 22, 671–678.Google Scholar
  13. 13.
    Cavallaroa, V., Barbera, A. C., Maucieri, C., Gimmaa, G., Scalisi, C., Patanea, C. (2016) Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95, 557–566.CrossRefGoogle Scholar
  14. 14.
    Cooper, M., Gho, C., Leafgren, R., Tang, T., Messina, C. (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6204.CrossRefGoogle Scholar
  15. 15.
    Delachiave, M. E. A., De Pinho, S. Z. (2003) Germination of Seena occidentalis link: seeds at different osmotic potential levels. Braz. Arch. Techno. 46, 163–166.CrossRefGoogle Scholar
  16. 16.
    Ebrahimi, D. M., Shirmohammadi, E. (2017) Effectiveness of plant growth promoting rhizobacteria on Bromus tomentellus Boiss seed germination, growth and nutrients uptake under drought stress. S. Aft J. Bot. 113, 11–18.CrossRefGoogle Scholar
  17. 17.
    Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., Huang, J. (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 8, 1147.Google Scholar
  18. 18.
    Hohl, M., Peter, S. (1991) Water relation of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol. 95, 716–722.CrossRefGoogle Scholar
  19. 19.
    Hu, F. D., Jones, R. J. (2004) Effects of plant extracts of Bothriochloa pertusa and Urochloa mosambicensis on seed germination and seedling growth of Stylosanthes hamata cv. Verano and Stylosanthes scabra cv. Seca. Aust. J. Agric. Res. 48, 1257–1264.CrossRefGoogle Scholar
  20. 20.
    Kalefetoglu, T., Macar, T., Turan, O., Ekmekci, Y. (2009) Effect of water stress deficit induced by PEG and Nacl on Chickpea (Cicer arietinum L.) cultivars and lines at early seedling stage. G. U. J. Sci. 22, 5–14.Google Scholar
  21. 21.
    Kaya, M. D., Okcu, G., Atak, M., Cikili, Y., Kolsarici, O. (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron. 24, 291–295.CrossRefGoogle Scholar
  22. 22.
    Khayatnezhad, M., Gholamin, R., Jamaatie-Somarin, S. H., Zabihi-Mahmoodabad, R. (2010) Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. World Appl. Sci. J. 11, 504–506.Google Scholar
  23. 23.
    Kulkarni, M., Deshpande, U. (2007) In vitro screening of tomato genotypes for drought resistance using polyethylene glycol. Afr. J. Biotechnol. 6, 691–696.Google Scholar
  24. 24.
    Lafitte, H. R., Yongsheng, G., Yan, S., Li, Z. K. (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J. Exp. Bot. 58, 169–175.CrossRefGoogle Scholar
  25. 25.
    Macart, K., Turan, Y., Ekmekci, T. (2009) Effect of water deficit induced by PEG and NaCl on chickpea (Cicer arietinum L.) cultivar and lines at early seedling stage. Gazi Uni. J. Sci. 22, 5–14.Google Scholar
  26. 26.
    Naidu, T. C. M., Raju, N., Narayanan, A. (2001) Screening of drought tolerance in green gram (Vigna radiata L. Wilczek) genotypes under receding soil moisture. Indian J. plantphysiol. 6, 197–201.Google Scholar
  27. 27.
    Naseer, S., Nisar, A., Ashraf M. (2001) Effect of Salt Stress on Germination and Seedling Growth of Barley (Hordeum vulgare L.). Pak. J. Biol. Sci. 4, 359–360.CrossRefGoogle Scholar
  28. 28.
    Petrovic, G., Jovicic, D., Nikolic, Z., Tamindzic, G., Ignjatov, M., Milosevic, D., Milosevic, B. (2016) Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika 48, 373–381.CrossRefGoogle Scholar
  29. 29.
    Rajendran, R. A., Muthiah, A., Manickam, R., Shanmugasundaram, A., John, J. (2011) Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Res. J. Agric. Biol. Sci. 7, 42–46.Google Scholar
  30. 30.
    Rauf S., Sadaqat, H. A., Khan, I. A. (2008) Effect of moisture regimes on combining ability variations of seedling traits in sunflower (Helianthus annuus L.). Can. J. Plant Sci. 88, 323–329.CrossRefGoogle Scholar
  31. 31.
    Rehman, A., Jingdong, L., Shahzad, B., Chandio, A. A., Hussain, I., Nabie, G., Iqbal, M. S. (2015) Economie perspectives of major field crops of Pakistan: An empirical study. Pacific Science Review B: Humanities and Social Sciences 1, 145–158.Google Scholar
  32. 32.
    Ribeiro, N. M., Torres, B. A., Ramos, S. K., Santos, R. H., Simoes, C. T., Monquero, P. A. (2018) Differential susceptibility of morning glory (Ipomoea and Merremia) species to residual herbicides and the effect of drought periods on efficacy. Aust. J. Crop Sci. 12, 1090–1098.CrossRefGoogle Scholar
  33. 33.
    Richards, R. A. (1978) Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress: Physiological and physicochemical characters. Aust. J. Agric Res. 29, 491–501.CrossRefGoogle Scholar
  34. 34.
    Shaheen, R., Hood-Nowotny, R. C. (2005) Effect of drought and salinity on carbon isotope discrimination in wheat cultivars. Plant Sci. 168, 901–909.CrossRefGoogle Scholar
  35. 35.
    Shamim, F., Saqlan, S. M., Athar, H. R., Waheed, A. (2014) Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pak. J. Bot. 46, 1165–1178.Google Scholar
  36. 36.
    Shu-han, Z., Xue-feng, X., Ye-min, S., Jun-lian, Z., Chao-zhou, L. (2018) Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 17, 336–347.CrossRefGoogle Scholar
  37. 37.
    Smykal, P., Aubert, G., Burstin, J., Coyn, C. J., Ellis, N. T. H., Flavell, A. J., Ford, R., Hybl, M., Macas, J., Neumann, P., Mc-Phee, K. E., Redden, R. J., Rubiales, D., Weller, J. L., Warkentin, T. L. (2012) Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2, 74–115.CrossRefGoogle Scholar
  38. 38.
    Snedecor, G. W., Cochran, W. G. (1980) Statistical methods. 7th edition, Iowa State University Press, Ames, Iowa.Google Scholar
  39. 39.
    Soltani, A., Gholipoor, M., Zeinali, E. (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ. Exp. Bot. 55, 195–200.CrossRefGoogle Scholar
  40. 40.
    Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J. K. (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anChina
  2. 2.Institute of Pure and Applied Biology Bahauddin Zakariya UniversityMultanPakistan

Personalised recommendations