Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 4, pp 411–422 | Cite as

In vitro Pharmacological Effects of Astragalus eremophilus and Melilotus parviflora

  • Muhammad Nadeem Khan
  • Muhstaq Ahmed
  • Muhammad Wasim Khan
  • Rahmat Ali KhanEmail author
Article

Abstract

Traditional medicines are composed of herbal formulations and their active ingredients and constituents which play a crucial role in the treatment of various human ailments. Astragalus eremophilus and Melilotus indicus (L.) All. (syn. Melilotusparviflora Desf.) are used traditionally as antiperspirant, tonic, diuretic, laxative and narcotic agents. The current study was designed to investigate the Astragalus eremophilus and Melilotus indicus (L.) All. (syn. Melilotus parviflora Desf.) methanol extracts for their anti-oxidant, antibacterial and antifungal activities. Fine powder of A. eremophilus and M. parviflora was extracted with 70% methanol to get crude methanol extract. Extract was characterized for antioxidant, antibacterial and antifungal activities. Antioxidant activity of various concentrations (3 mg/ml, 1.5 mg/ ml, 0.75 mg/ml, and 0.38 mg/ml) of both plant extracts was analyzed using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical. Salmonella typhemorium, Klebsiellapneumoniae (gram-negatie)andStaphylococcus aureus, Enterococcus faecalis (gram-positive) bacterial strains were used for assessment of antibacterial activities. Antifungal activities of 7.5 mg/ml, 5.0 mg/ml, 2.5 mg/ml (A. eremophilus and M. parviflora) were conducted using Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus and Candida albicons. At high concentration (3 mg/ml), all the tested fractions of A. eremophilus and M. parviflora methanol extracts showed potent antioxidant activities, ranging between 83.8 and 63.33%. Antibacterial activities revealed that A. eremophilus showed a maximum zone of inhibition (8.1 ±0.1) on Salmonella typheno-rium foliowed by Enterococcus faecalis (7.2 ± 0.1), Klebsellesa pneumonia (6.1 ± 0.6), and Staphylococcus aureus (5.1 ±0.4), and at highest concentration (7.5 mg/ml), however, maximum zone of inhibition of Melilotus parviflora was at 7.5 mg/ml foliowed by 5.0 mg/ml and 2.5 mg/ml against Klebsiella pneumonia, Staphylococcus aureus, Salmonella typhemorium and Enterococcus faecalis. Antifungal assessment of both plant extracts showed that the higher concentration (7.5 mg/ml) has significant inhibitory effect as compared to control. The results can lead to the conclusion that A. eremophilus and M. parviflora methanol extracts are indeed sources of potential therapeutic compounds against antibacterial, antifungal and free radical associated disorders.

Keywords

Astragalus eremophilus Melilotus parviflora antioxidant antibacterial antifungal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adeniji, I. T., Adio, A. F., Iroko, O. A., Kareem, A. A., Jegede, O. C., Kazeem-Ibrahim, F., Adewole, T. O., Adeosu, A. O. (2014) Pre-treatment of seeds of Annona squamosa (sugar apple) a non-timber forest product. Res. Plant Sci. 2, 50–52.Google Scholar
  2. 2.
    Akinyemi, K. O., Oladapo, O., Okwara, C. E., Ibe, C. C., Fasure, K. A. (2005) Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Compl. Alter. Med. 5, 6–13.CrossRefGoogle Scholar
  3. 3.
    Bruneton, J. (1995) Pharmacognosy, phytochemistry, medicinal plants. Paris, Lavoisier Publishing.Google Scholar
  4. 4.
    Bocco, A., Marie, E. C., Hubert, R., Claudette, B. (1998) Antioxidant Activity and Phenolic Composition of Citrus Peel and Seed Extracts. J. Agric. FoodChem. 46, 2123–2129.CrossRefGoogle Scholar
  5. 5.
    Brand-Williams, W., Cuvelier, M. E., Berset, C. (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol. 28, 25–30.CrossRefGoogle Scholar
  6. 6.
    Baba, A., Malik, S. A., Baba, A. S. (2015) Determination of total phenolic and flavonoid content, anti-microbial and antioxidant activity of a root extract of Arisaema jacquemonti Blume. J. Taib. Univ. Sci. 9, 449–154.CrossRefGoogle Scholar
  7. 7.
    Burt, S. (2004) Essential oils, their antibacterial properties and potential applications in foods a review. Int. J. Food. Micro. 94, 223–253.CrossRefGoogle Scholar
  8. 8.
    Bylka, W., Goslinska, O. (2001) Determination of isocytisoside andantimicrobial activity of etha-nolic extract from Aquilegia vulgaris. J. Acta. Polo. Pharm. 58, 241–243.Google Scholar
  9. 9.
    Chhetri, H. R., Yogol, N. S., Sherchan, J., Mansoor, K. C. A., Thapa, P. S. (2008) Phytochemical and antimicrobial evaluations of some medicinal plants of Nepal. Kathmandu University J. Sci. Eng. Tech. 1, 49–54.CrossRefGoogle Scholar
  10. 10.
    Chaudhary, L. B., Rana, T. S., Anand, K. K. (2008) Current status of the systematics of Astragalus L. (Fabaceae) with special reference to the Himalayan species in India. Taiwania 53, 338–355.Google Scholar
  11. 11.
    Choudhary, M. I., Dur-e-Shahwar, Z., Perveen, A., Atta-ur-Rahman, Ali, I. (1995) Antifungal steroidal lactones from Withania coagulance. Phytochemistry 40, 1243–1246.CrossRefPubMedGoogle Scholar
  12. 12.
    Doughari, J. H. (2006) Antimicrobial activity of Tamarindus indica Linn. Trop. J. Pharm. Res. 5, 597–603.Google Scholar
  13. 13.
    De, M., De, A. K., Banerjee, A. B. (1999) Antimicrobial screening of some Indian spices. Phytother. Res. 13, 616–618.CrossRefPubMedGoogle Scholar
  14. 14.
    De Quan, Y. U. (1999) Recent works on anti-tumor constituent from Annonaceae plants in China. Pure Appl. Chem. 71, 1119–1122.CrossRefGoogle Scholar
  15. 15.
    De Luca, V., (2011) Monoterpenoid indole alkaloid biosynthesis. In: Ashihara, H., Crozier, A., Komamine, A. (eds), Plant Metabolism and Biotechnology John Wiley and Sons Ltd., Chichester, pp. 263–291.Google Scholar
  16. 16.
    Duenas, M., Hernandez, T. Estrella, I. (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. FoodChem. 98, 95–103.Google Scholar
  17. 17.
    Fellenberg, M. A., Espinoza, A., Pena, I., Alarcón, J. (2011) Antioxidant and Bacteriostatic Effects of the Addition of Extract of Quillay Polyphenols (Quillaja saponaria) in the Marinade of Broiler Chicken. Brazilian J. Poultry Sci. 1, 9–11.Google Scholar
  18. 18.
    Ganapaty, S., Steve, T. R., Venkata, R. K., Neeharika, V. (2001) Areview of phytochemical studies of Rauwolfia species. Indian Drugs 38, 601–612.Google Scholar
  19. 19.
    Holtz, C. (2007) Global health care: Issues and policies. Jones & Bartlett Publishers, Sudbury, MA.Google Scholar
  20. 20.
    Hyat, M. Q., Khan, M. A., Ashraf M., Jabeen, S. (2009) Ethnobotany of the Genus Artemisia L. (Asteraceae) in Pakistan. Ethnobot. Res. Appl. 7, 147–162.CrossRefGoogle Scholar
  21. 21.
    Imperato, R. J. (1981) Modern and Traditional Medicine: The Case of Mali. Annals Intl. Med 95, 650–651.CrossRefGoogle Scholar
  22. 22.
    Izzotti, A., Sacca, S. C., Longobardi, M., Cartiglia, C. (2010) Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch. Ophthalmol. 128, 724–730.CrossRefPubMedGoogle Scholar
  23. 23.
    Kalimuthu, K., Vrjayakumar, S., Senthilkumar, R. (2010) Antimicrobial Activity of the Biodiesel Plant, Jatropha Curcas L. Intl. J. Pharma. Biosci. 1, 1–5.Google Scholar
  24. 24.
    Khan, A. M., Qureshi, A. M., Gillani, S. A., Ullah, R. (2011) Antimicrobial activity of selected medicinal plants of Margalla Hills, Islamabad Pakistan. J. Med. Plants Res. 5, 4665–1670.Google Scholar
  25. 25.
    Kavanagh, R. (1963) Analytical microbiology. Academie Press London.Google Scholar
  26. 26.
    Kilani, S., Sghaier, M. E-., Limem, I., Bouhlel, I., Boubaker, J., Bhouri, W., Skandrani, I., Neffatti, A., Ammarb, R. A., Dijoux-Franca, R. A., Ghediram, K., Chekir-Ghedira, L. (2008) In vitro evaluation of antibacterial, antioxidant, cytotoxic and apoptotic activities of the tubers in fusion and extracts of Cyperus rotundus. Bioresource Technol. 99, 9004–9008.CrossRefGoogle Scholar
  27. 27.
    Kabuki, T., Nakajima, H., Arai, M. (2000) Characterization of novel antimicrobial compounds from mango (Mangifera indica L.) Kernel Seeds. Food Chem. 71, 61–66.CrossRefGoogle Scholar
  28. 28.
    Marjorie, M. C. (1999) Plant products as antimicrobial agents. Clinical Microbiol. Rev. 12, 564–582.CrossRefGoogle Scholar
  29. 29.
    Maisuthisakul, R. (2008) Antiradical scavenging activity and polyphenolic compounds extracted from Thai mango seed kernels. Asian J. Food Agric. Ind. 1, 87–96.Google Scholar
  30. 30.
    Moerman, D. (1998) Native American ethnobotany Timber Press. Oregon.Google Scholar
  31. 31.
    Magaldi, S., Mata-Essayag, S., Hartung, C. (2004) Well diffusion for antifungal susceptibility testing. IntlJ. Infec. Dis. 8, 39–15.CrossRefGoogle Scholar
  32. 32.
    Mohanta, T. K., Patra, J. K., Rath, S. K., Pal, D. K., Thatoi, H. N. (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci. Res. Essay 2, 486–190.Google Scholar
  33. 33.
    Nadkarni’s, K. M. (1976) Indian Materia Medica, Volume 1, Popular Prakashan, Mumbai.Google Scholar
  34. 34.
    Patwardhan, B., Hooper, M. (1992) Ayurveda and future drug development. IntlJ. Alter. Compl. Med 10, 9–11.Google Scholar
  35. 35.
    Robbers, J., Speedie, M., Tyler, V. (1996) Pharmacognosy andpharmacobiotechnology. Williams and Wilkins, Baltimore.Google Scholar
  36. 36.
    Sucher, N. J., Carles, M. C. (2008) Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Medica 74, 603–623.CrossRefPubMedGoogle Scholar
  37. 37.
    Slik, I. W. F., Poulsen, A. D., Ashton, R. S., Cannon, C. H., Eichhorn, K. A. O., Kartawinata, K., Lanniari, I., Nagamasu, H., Nakagawa, M., Van Nieuwstadt, M. G. L., Payne, J. (2003) A. floristic analysis of the lowland dipterocarp forests of Borneo. Pak. J. Biol. Sci. 9, 2600–2605.Google Scholar
  38. 38.
    Stepanovic, S., Cirkovic, I., Mijac, V., Svabic-Vlahovic, M. (2003) Influence of the incubation tem-perature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol. 20, 339–343.CrossRefGoogle Scholar
  39. 39.
    Tewari, D. N. (2000) Report of the taskforce on conservation and sustainable use of medicinal plants. Planning commission. 1–18.Google Scholar
  40. 40.
    Valgas, C., De Souza, S. M., Smania, E. F. A. (2007) Screening methods to determine antibacterial activity of natural products. Brazilian J. Microbiol. 38, 369–380.CrossRefGoogle Scholar
  41. 41.
    Villa F., Pitts B., Stewart R. S., Giussani B., Roncoroni S., Albanese D. (2011) Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microbiol. Ecol. 62, 584–598.CrossRefGoogle Scholar
  42. 42.
    WHO. Traditional medicine strategy 2003-2005. Geneva, World Health Organization, 2003. (WHO/ EDM/TRM/2003.1).Google Scholar
  43. 43.
    World Health Organization (WHO). (1978) The promotion and development of traditional medicine. Technical report series pp. 622.Google Scholar
  44. 44.
    Xu, L., Sun, N., Kong, J. (1992) Alkaloids of Annona reticulata L. Zhonqquo Zhong Yao Zazhi 17, 295–296.Google Scholar
  45. 45.
    Yang, X., Yang, L., Zheng, H. (2010) Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidemia rats. Food Chem. Toxicol. 48, 2374–2379.CrossRefPubMedGoogle Scholar
  46. 46.
    Yigit, D., Yigit, N., Mavi, A. (2009) Antioxidant and antimicrobial activities of bitter and sweet apri-cot (Prunus armeniaca L.) kernels. Brazilian J. Med. Biol. Res. 42, 346–352.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Muhammad Nadeem Khan
    • 1
  • Muhstaq Ahmed
    • 1
  • Muhammad Wasim Khan
    • 2
  • Rahmat Ali Khan
    • 1
    Email author
  1. 1.Department of BiotechnologyUniversity of Science and Technology BannuKPKPakistan
  2. 2.Institute of Pharmacology, School of Pharmaceutical SciencesShandong UniversityShandongChina

Personalised recommendations