Acta Biologica Hungarica

, Volume 69, Issue 2, pp 210–223 | Cite as

The Effects of Interspecific Interactions Between Bloom Forming Cyanobacteria and Scenedesmus quadricauda (Chlorophyta) on Their Photophysiology

  • Attila W. KovácsEmail author
  • Viktor R. Tóth
  • Károly Pálffy


Eutrophication and enhanced external nutrient loading of lakes and seas are most clearly reflected by increased cyanobacterial blooms, which are often toxic. Freshwater cyanobacteria produce a number of bioactive secondary metabolites, some of which have allelopathic properties, significantly influencing the biological processes of other algae, thereby affecting species composition and succession of the phytoplankton. The goal of this work was to investigate the influence of bloom-forming cyanobacterial exudates on the photophysiology of the green alga Scenedesmus quadricauda by chlorophyll fluorescence analysis. We were able to prove the effect of algal cell-free fltrates on the performance of S. quadricauda and demonstrate for the first time that the freshwater picocyanobacterium Cyanobium gracile has strong negative impact on the coexisting green alga. Neither the cyanotoxin (MYC, CYN and ATX) producing, nor the non-toxic strains showed any systematic effect on the production of S. quadricauda. Various strains of the cyanobacterium Cylindrospermopsis raciborskii inhibited the performance of the green alga independently of their origin. Our results urge further studies for a better understanding of the factors affecting the release of allelopathic compounds and the mechanisms of their effects on target organisms.


Allelopathy cell-free extract chlorophyll fluorescence rapid light curves Cylindrospermopsis raciborskii picocyanobacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The research was supported by the Bolyai Research Fund. We are grateful to Martin L. Saker (Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, University of Porto, Portugal) for the C. raciborskii strain of AQS.


  1. 1.
    Bláha, L., Maršálek, B. (1999) Microcystin production and toxicity of picocyanobacteria as a risk factor for drinking water treatment plants. Algol. Stud. 92, 95–108.Google Scholar
  2. 2.
    Bilger, W., Schreiber, U. (1986) Energy dependent quenching of dark-level chlorophyll fuorescence in intact leaves. Photosynth Res. 10(3), 303–308.PubMedGoogle Scholar
  3. 3.
    Ciscar, J. C., Feyen, L., Soria, A. (2014) Climate impacts in Europe. The JRC PESETA II project. JRC scientifc and politicy reports, EUR 26586EN.Google Scholar
  4. 4.
    Dyble, J., Tester, P. A., Litaker, R. W. (2006) Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. Afr. J. Mar. Sci. 28, 309–312.Google Scholar
  5. 5.
    Eilers, P. H. C., Peeters, J. C. H. (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model 42, 199–215.Google Scholar
  6. 6.
    Falkowski, P. G. (1992) Molecular ecology of phytoplankton photosynthesis. In: Falkowski, P. G., Woodhead, A. D. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, pp. 47–67.Google Scholar
  7. 7.
    Figueredo, C. C., Giani, A., Bird, D. F. (2007) Does allelopathy contribute to Cylindro-spermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion? J. Phycol. 43, 256–265.Google Scholar
  8. 8.
    Gross, E. M. (2003) Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313–339.Google Scholar
  9. 9.
    Iwamura, T., Nagai, H., Ichimura, S. (1970) Improved methods for determining contents of chlorophyll, protein, ribonucleic acid, deoxyribonucleic acid in planktonic populations. Int. Rev. ges. Hydrobiol. 55, 131–147.Google Scholar
  10. 10.
    Jakubowska, N., Szeląg-Wasielewska, E. (2015) Toxic picoplanktonic cyanobacteria-Review. Mar. Drugs 13, 1497–1518.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jasser, I., Lehtovaara, A., Arvola, L. (2006) Seasonality and coexistence of autotrophic pico- and nanoplankton and zooplankton in three boreal lakes. Verhandlungen des Internationalen Verein Limnologie 29, 1413–1416.Google Scholar
  12. 12.
    Jöhnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., Stroom, J. M. (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512.Google Scholar
  13. 13.
    Kearns, K. D., Hunter, M. D. (2001) Toxin-producing Anabaena fos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42, 80–86.PubMedGoogle Scholar
  14. 14.
    Keating, K. I. (1977) Allelopathic infuence on blue-green bloom sequence in a eutrophic lake. Science 196, 885–887.PubMedGoogle Scholar
  15. 15.
    Keating, K. I. (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199, 971–973.PubMedGoogle Scholar
  16. 16.
    Leăo, P. N., Vasconcelos, M. T. S. D., Vasconcelos, V. M. (2009) Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282.PubMedGoogle Scholar
  17. 17.
    Leăo, P. N., Vasconcelos, T. M. S. D., Vasconcelos, V. M. (2009) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur. J. Phycol. 44, 347–355.Google Scholar
  18. 18.
    Legrand, C., Rengefors, K., Fistarol, G. O., Granéli, E. (2003) Allelopathy in phytoplankton - biochemical, ecological, and evolutionary aspects. Phycologia 42, 406–419.Google Scholar
  19. 19.
    Li, W. K. W., Suba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, B., Irwin, B., Platt, T. (1983) Autotrophic picoplankton in the tropical ocean. Science 219, 292–295.PubMedGoogle Scholar
  20. 20.
    Maxwell, K., Johnson, G. N. (2000) Chlorophyll fuorescence-a practical guide. J. Exp. Botany 51, 659–668.Google Scholar
  21. 21.
    Mazmouz, R., Chapuis-Hugon, F., Mann, S., Pichon, V., Mejean, A., Ploux, O. (2010) Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: Identifcation of the cyr gene cluster and toxin analysis. App. Environ. Microb. 76, 4943–4949.Google Scholar
  22. 22.
    Meriluoto, J., Spoof, L., Codd, G. A. (2017) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons Ltd., United Kingdom.Google Scholar
  23. 23.
    Oberholster, P. J., Myburgh, J. G., Govender, D., Bengis, R., Botha, A.-M. (2009) Identifcation of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotox. Environ. Safety 72, 1177–1182.Google Scholar
  24. 24.
    O’Neil, J. M., Davis, T. W., Burford, M. A., Gobler, C. J. (2012) The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334.Google Scholar
  25. 25.
    Padisák, J., Reynolds, C. S. (1998) Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384, 41–53.Google Scholar
  26. 26.
    Paerl, H. W., Paul, V. J. (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363.PubMedGoogle Scholar
  27. 27.
    Pick, F. R. (2016) Blooming algae: A Canadian perspective on the rise of toxic cyanobacteria. Can. J. Fish. Aquat. Sci. 73, 1149–1158.Google Scholar
  28. 28.
    Rasconi, S., Gall, A., Winter, K., Kainz, M. J. (2015) Increasing water temperature triggers dominance of small freshwater plankton. PLOS ONE DOI:10.1371/journal.pone.0140449.Google Scholar
  29. 29.
    Reynolds, C. S. (2006) The Ecology of Phytoplankton. Cambridge University Press, New York.Google Scholar
  30. 30.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., Stainer, R. Y. (1979) The cyanobacteria. J. Gen. Microbiol. 111, 1–61.Google Scholar
  31. 31.
    Saker, M. L., Neilan, B. A. (2001) Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia. App. Environ. Microb. 67, 1839–1845.Google Scholar
  32. 32.
    Schreiber, U. (1998) Chlorophyll fuorescence: new instruments for special applications. In: Garab, Gy. (ed.) Proceedings of the XIth International Congress on Photosynthesis, Vol. V. Kluwer, Dordrecht, pp. 4253–4258.Google Scholar
  33. 33.
    Schreiber, U., Hormann, H., Neubauer, C., Klughammer, C. (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fuorescence quenching analysis. Aust. J. Plant Physiol. 22, 209–220.Google Scholar
  34. 34.
    Sedmak, B., Eleršek, T. (2005) Microcystins induce morphological and physiological changes in selected representative phytoplankton. Microb. Ecol. 50, 298–305.PubMedGoogle Scholar
  35. 35.
    Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016) Allelopathic activity of the picocyano-bacterium Synechococcus sp. under varied light, temperature, and salinity conditions. Int. Rev. Hydrobiol. 101), 69–77.Google Scholar
  36. 36.
    Śliwińska-Wilczewska, S., Pniewski, F., Latała, A. (2016) Allelopathic interactions between Synechococcus sp. and Nodularia spumigena under different light conditions. Allelopathy J. 37, 241–252.Google Scholar
  37. 37.
    Śliwińska-Wilczewska, S., Maculewicz, J., Barreiro, A. F., Vasconcebos, V., Latała, A. (2017) Allelopathic activity of picocyanobacterium Synechococcus sp. on flamentous cyanobacteria. J. Exp. Mar. Biol. Ecol. 496, 16–21.Google Scholar
  38. 38.
    Smith, G. D., Doan, N. T. (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J. Appl. Phycol. 11, 337–344.Google Scholar
  39. 39.
    Sommer, U., Gliwicz, Z. M., Lampert, W., Duncan, A. (1986) The PEG-Model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106, 433–471.Google Scholar
  40. 40.
    Stal, L. J., Albertano, P., Bergman, B., Bröckel, K., Gallon, J. R., Hayes, P. K., Sivonen, K., Walsby, A. E. (2003) BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - responses to a changing environment. Continental Shelf Research 23, 1695–1714.Google Scholar
  41. 41.
    Suikkanen, S., Fistarol, G. O., Graneli, E. (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287, 1–9.Google Scholar
  42. 42.
    Sukenik, A., Eshkol, R., Livne, A., Hadas, O., Rom, M., Tchernov, D., Vardi, A., Kaplan, A. (2002) Inhibition of growth and photosynthesis of the dinofagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism. Limnol. Oceanogr. 47, 1656–1663.Google Scholar
  43. 43.
    Swain, S. S., Paidesetty, S. K., Padhya, R. N. (2017) Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomedicine & Pharmacotherapy 90, 760–776.Google Scholar
  44. 44.
    Tilman, D. (1977) Resource competition between planktonic algae: An experimental and theoretical approach. Ecology 58, 338–348.Google Scholar
  45. 45.
    Vörös, L., Nagy Göde, P. (1993) Long term changes of phytoplankton in Lake Balaton (Hungary). Verh. Int. Verein. Limnol. 25, 682–686.Google Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Attila W. Kovács
    • 1
    Email author
  • Viktor R. Tóth
    • 1
  • Károly Pálffy
    • 1
  1. 1.Department of Hydrobotany, MTA Centre for Ecological ResearchBalaton Limnological InstituteTihanyHungary

Personalised recommendations