Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 3, pp 325–335 | Cite as

Physiological Effects of the Brown Seaweed (Ascophyllum nodosum) and Humic Substances on Plant Growth, Enzyme Activities of Certain Pepper Plants Grown under Salt Stress

  • Mahmut YildiztekinEmail author
  • Atilla Levent Tuna
  • Cengiz Kaya
Article
  • 3 Downloads

Abstract

This study was aimed to examine the effects of seaweed extract (SW) and humic acid on the fruit yield, dry weight (DW%), protein, proline, lipid peroxidation (LPO) and antioxidative enzyme activity of pepper plants (Capsicum annuum L.) grown under saline conditions (100 mM). The obtained results indicated that salinity stress affected deleteriously plant growth and all other parameters. Besides, the treatment of seaweed (SW) and humic acid (HA) improved vegetative growth in the plant at all concentration levels applied under salinity conditions. Leaf fresh and dry weight was increased by all SW and HA applications in salinity stressed plant compared to those of control. Furthermore, there was a significant improvement in antioxidant enzyme activity, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities in the plant under salt stress and treated with SW and HA compounds. It suggests that seaweed and humic acid can enhance salt stress tolerance and leads to conservation of pepper plant against oxidative stress.

Key words

Capsicum annuum L. salt stress antioxidative enzymes seaweed humic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, G. D., Stirk, W. A., Van Staden, J. (2003) Effect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S. Afr. J. Chem. 69, 207–211.Google Scholar
  2. 2.
    Ashraf, M., Harris, P. J. C. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16.Google Scholar
  3. 3.
    Ashraf, M., Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exper. Bot. 59, 206–216.Google Scholar
  4. 4.
    Ashrafuzzaman, M., Khan, M. A. H., Shahidullah, S. M. (2003) Response of vegetative growth of maize (Zea mays) to a range of salinity. J. Biol. Sci. 3, 253–258.Google Scholar
  5. 5.
    Aymen, E. M., Salma, L., Halima, C., Cherif, H., Mimoun. E. (2014) Effect of seaweed extract of Sargassum vulgare on germination behavior of two tomatoes cultivars (Solanum Lycopersıcum L.) under salt stress. Oct. Jour. Env. Res. 2, 203–210.Google Scholar
  6. 6.
    Bates, L. S., Waldren, R. P., Teare, I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil 39, 205–207.Google Scholar
  7. 7.
    Battacharyya, D., Babgohari, M. Z., Rathor, P., Prithiviraj, B. (2015) Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 196, 39–48.Google Scholar
  8. 8.
    Bergmeyer, N. (1970) Methoden Der Enzymatischen Analyse. Berlin: Akademie Verlag, 1: pp. 636–647.Google Scholar
  9. 9.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of Protein-Dye Binding. Anal. Biochem. 72, 248–254.Google Scholar
  10. 10.
    Cakmak, I., Horst, W. J. (1991) Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468.Google Scholar
  11. 11.
    Cakmak, I., Strbac, D., Marschner, H. (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44, 127–132.Google Scholar
  12. 12.
    Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., Piccolo, A. (2015) Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 196, 15–27.Google Scholar
  13. 13.
    Chbania, A., Majed, S., Mawlawi, H., Kammoun, M. (2015) The use of seaweed as a bio-fertilizer: Does it influence proline and chlorophyll concentration in plants treated? AJMAP 1, 67–77.Google Scholar
  14. 14.
    Chen, Y., Aviad, T. (1990) Effects of humic substances on plant growth. In: MacCarthy, P., Clapp, C. E., Malcolm, R. L., Bloom, P. R. (eds), Humic Substances in Soil and Crop Sciences: Selected Readings. SSSA, Madison, pp. 161–186.Google Scholar
  15. 15.
    Clapp, C. E., Liu, R., Cline, V. W., Chen, Y., Hayes, M. H. B. (1998) Humic substances for enhancing turfgrass growth. In: Davies, G., Gabbour, E. A. (eds) Humic substances: Structures, properties, and uses. Royal Society of Chemistry Publ. Cambridge, U.K. pp. 227–234.Google Scholar
  16. 16.
    Esringü, A., Kaynar, D., Turan, M., Ercişli, S. (2016) Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Commun. Soil Sci. Plant Anal. 47, 602–618.Google Scholar
  17. 17.
    Fan, D., Hodges, D. M., Critchley, A. T., Prithiviraj, B. (2013) A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 44, 1873–1884.Google Scholar
  18. 18.
    Farahat, M. M., Mazhar, A. A., Mona, H., Mahgoub, M. H. (2012) Response of Khaya senegalensis seedlings to irrigation intervals and foliar application of humic acid. JHSOP 4, 292–298.Google Scholar
  19. 19.
    Fornes, F., Sánchez-Perales, M., Guadiola, J. L. (2002) Effect of a seaweed extract on the productivity of ‘de Nules’ Clementine mandarin and navelina orange. Bot. Mar. 45, 486–489.Google Scholar
  20. 20.
    Gharib, F. A. E. L., Zeid, İ. M., Salem, O. M. A. E. H., Ahmed, E. Z. (2014) Effects of Sargassum latifolium extract on growth, oil content and enzymatic activities of rosemary plants under salinity stress. Life Sci. 11, 933–945.Google Scholar
  21. 21.
    Giannopolitis, C. N., Ries, S. K. (1977) Superoxide dismutases occurrence in higher plants. Plant Physiol. 59, 309–314.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Haddadi, B. S., Hassanpour, H., Niknam, V. (2016) Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiol. Plant 38, 119.Google Scholar
  23. 23.
    Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., Ahmad, A. (2012) Role of proline under changing environments: a review. Plant Signal. Behav. 7, 1456–1466.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Henderson, J. (2004) The Roman book of gardening. Routledge, London.Google Scholar
  25. 25.
    Herzog V., Fahimi, H. (1973) Determination of the activity of peroxidase. Anal. Biochem. 55, 554–562.PubMedGoogle Scholar
  26. 26.
    Karthikeyan, K., Shanmugam, M. (2014) Enhanced yield and quality in some banana varieties applied with commercially manufactured biostimulant Aquasap from sea plant Kappaphycus alvarezii. J. Agr. Sci. Tech. B 4, 621–631.Google Scholar
  27. 27.
    Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., Prithiviraj, B. (2009) Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399.Google Scholar
  28. 28.
    Latique, S., Chernane, H., Mansori, M., El Kaoua, M. (2016) Biochemical modification and changes in antioxidant enzymes in Triticum durum L. by seaweed liquid extract of Ulva rigida macroalgae under salt stress condition. Adv. Environ. Res. 50, 35–54.Google Scholar
  29. 29.
    Li, W., Liu, X., Khan, M. A., Yamagnchi, S. (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J. Plant Res. 118, 207–214.PubMedGoogle Scholar
  30. 30.
    Liang, Z., Sun, X., Wang, F., Wang, W., Liu, F. (2013) Impact of environmental factors on the photosynthesis and respiration of young seedlings of Sargassum thunbergii (Sargassaceae, Phaeophyta). Am. J. Plant Sci. 4, 27–33.Google Scholar
  31. 31.
    Manaf, H. H. (2016) Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Ann. Agric. Sci. 61, 41–48.Google Scholar
  32. 32.
    Nakano, Y., Asada, Y. (1987) Purification of ascorbate peroxidase from spinach chloroplasts: Its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–140.Google Scholar
  33. 33.
    Osman, A. S., Rady, M. M. (2012) Ameliorative effects of sulfur and humic acid on the growth, antioxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. J. Hortic. Sci. Biotechnol. 87, 626–632.Google Scholar
  34. 34.
    Popescu, G. C., Popescu, M. (2014) Effect of the brown alga Ascophyllum nodosum as biofertilizer on vegetative growth in grapevine (Vitis vinifera L.). CTNS 3, 61–67.Google Scholar
  35. 35.
    Rathore, S. S., Chaudhary, D. R., Boricha, G. N., Ghosh, A., Bhatt, B. P., Zodape, S. T., Patolia, J. S. (2009) Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 75, 351–355.Google Scholar
  36. 36.
    Shah, M. T., Zodape, S. T., Chaudhary, D. R., Eswaran, K., Chikara, J. (2013) Seaweed sap as an alternative liquid fertilizer for yield and quality improvement of wheat. J. Plant Nutr. 36, 192–200.Google Scholar
  37. 37.
    Sylvia, S., Baluswami, M., Parthasarathy, V. M. D., Krishnamurthy, V. (2005) Effect of liquid seaweed fertilizers extracted from Gracilaria edulis (Gmel.) Silva, Sargassum wightii greville and Ulva lactuca Linn. on the growth and yield of Abelmoschus esculentus (L.) Moench. Indian Hydrobiol. 7, 69–88.Google Scholar
  38. 38.
    Temple, W. D., Bomke, A. A. (1989) Effects of kelp (Macrocystis integrifolia and Ecklonia maxima) foliar application on bean crop growth. Plant Soil 117, 85–92.Google Scholar
  39. 39.
    Wang, Y., Xiang, L., Wang, S., Wang, X., Chen, X., Mao, Z. (2017) Effects of seaweed fertilizer on the Malus hupehensis Rehd. seedlings growth and soil microbial numbers under continuous cropping. Acta Ecol. Sin. 37, 180–186.Google Scholar
  40. 40.
    Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., Golezani, K. G. (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. 5, 60–67.Google Scholar
  41. 41.
    Xu, C., Leskovar, D. I. (2015) Effects of Ascophyllum nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hort. 183, 39–47.Google Scholar
  42. 42.
    Yıldıztekin, M., Kaya, C., Tuna, A. L., Ashraf, M. (2015) Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides. Pak. J. Bot. 47, 717–721.Google Scholar
  43. 43.
    Yildiz, M., Terzi, H. (2013) Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. JAS 19, 79–88.Google Scholar
  44. 44.
    Zodape, S. T., Mukhopadhyay, S., Eswaran, K., Reddy, M. P., Chikara, J. (2010) Enhanced yield, and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. JSIR 69, 468–471.Google Scholar
  45. 45.
    Zou, X. X., Xing, S. S., Su, X., Zhu, J., Huang, H. Q., Bao, S. X. (2017) The effects of temperature, salinity, and irradiance upon the growth of Sargassum polycystum C. Agardh (Phaeophyceae). J. Appl. Phycol. 29, 1–9.Google Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mahmut Yildiztekin
    • 1
    Email author
  • Atilla Levent Tuna
    • 2
  • Cengiz Kaya
    • 3
  1. 1.Department of Herbal and Animal Production, Koycegiz Vocational SchoolMuğla Sıtkı Kocman UniversityMuğlaTurkey
  2. 2.Department of Biology, Faculty of ScienceMuğla Sıtkı Kocman UniversityMuğlaTurkey
  3. 3.Department of Soil Science and Plant Nutrition, Faculty of AgricultureHarran UniversityŞanlıurfaTurkey

Personalised recommendations