Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 3, pp 300–312 | Cite as

Corchorus olitorius and Urtica pilulifera Extracts Alleviate Copper Induced Oxidative Damage and Genotoxicity in Tomato

  • Özlem Darcansoy İşeriEmail author
  • Dİdem Aksoy Körpe
  • Feride Iffet Sahin
  • Mehmet Haberal
Article
  • 1 Downloads

Abstract

Copper cause oxidative damage in plant cells, and plant extracts are the sources of free radical scavengers. We tested the hypothesis that whether Corchorus olitorius (jute) and Urtica pilulifera (Roman nettle) seed extract treatments of germinated seeds affect copper induced oxidative and genotoxic damage or antioxidant response in tomato. Seedlings were exposed to toxic copper concentration (30 ppm) for 7 days. In one experimental group (treatment 1), extract (100 μg mL−1) was added to media. In the other group (treatment 2), tomato seeds were pre-soaked by the extract (100 μg mL−1) prior to germination and copper application. Malondialdehyde and endogenous H2O2 levels in the groups treated with extract and copper were significantly lower than that of the untreated groups. Pre-soaking seeds with the nettle extract solution significantly enhanced catalase activity under unstressed condition. Jute treatment also enhanced catalase activity under copper stress. Ascorbate peroxidase activity remained at unstressed level in copper treated groups. Extract treatments significantly decreased copper induced DNA damage in root nuclei. Jute seed extract contained salicylic acid and quercetin which can be correlated with the evoked effects. We demonstrated protective effect of plant extract treatments against copper stress of tomato seedlings prior to germination or during seedling development.

Key words

Copper stress Solanum lycopersicum jute Roman nettle genotoxic damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anjum, N. A., Hasanuzzaman, M., Hossain, M. A., Thangavel, P., Roychoudhury, A., Gill, S. S., Rodrigo, M. A. M., Adam, V., Fujita, M., Kizek, R., Duarte, A. C., Pereira, E., Ahmad, I. (2015) Jacks of metal/metalloid chelation trade in plants–an overview. Front. Plant Sci. 6, 192.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Arora, A., Byrem, T. M., Nari, M. G., Strasburg, G. M. (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 373, 102–109.CrossRefGoogle Scholar
  3. 3.
    Beckers, G. J. M., Conrath, U. (2007) Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10, 425–431.CrossRefGoogle Scholar
  4. 4.
    Bernt, E., Bergmeyer, H. U. (1974) Inorganic peroxidasses. In: Bergmeyer, H. U. (ed.) Methods of Enzymatic Analysis. CRC Press, Boca Raton, pp. 2246–2248.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.Google Scholar
  6. 6.
    Chance, B., Mahly, A. C. (1995) Assay of catalases and peroxidases. Methods Enzymol. 2, 764–817.CrossRefGoogle Scholar
  7. 7.
    Conrath, U. (2011) Molecular aspects of defence priming. Trends Plant Sci. 16(10), 524–531.Google Scholar
  8. 8.
    Doncheva, S., Nicolov, B., Ogneva, V. (1996) Effect of copper excess on the morphology of the nucleus in maize root meristem cells. Physiol. Plantarum 96, 118–122.CrossRefGoogle Scholar
  9. 9.
    Ducic, T., Polle, A. (2005) Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 17, 103–112.CrossRefGoogle Scholar
  10. 10.
    Ghareib, H. R. A., Abdelhamed, M. S., Ibrahim, O. H. (2010) Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol. Manag. 10, 64–72.CrossRefGoogle Scholar
  11. 11.
    İşeri, Ö. D., Körpe, D. A., Sahin, F. I., Haberal, M. (2012) Evaluation of plant extracts of high antibacterial activity against Clavibacter michiganensis subsp. michiganensis for allelopathic effect on tomato seed germination. New Biotech. 29, 186.CrossRefGoogle Scholar
  12. 12.
    İşeri, Ö. D., Körpe, D. A., Sahin, F. I., Haberal, M. (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol. Plantarum 35, 1905–1913.CrossRefGoogle Scholar
  13. 13.
    İşeri, Ö. D., Körpe, D. A., Yurtcu, E., Sahin, F. I., Haberal, M. (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep. 30, 1713–1721.CrossRefGoogle Scholar
  14. 14.
    İşeri, Ö. D., Sahin, F. I., Haberal, M. (2014) Sodium chloride priming improves salinity response of tomato (Lycopersium esculentum Mill.) at seedling stage. J. Plant Nutr. 37, 374–392.CrossRefGoogle Scholar
  15. 15.
    İşeri, Ö. D., Yurtcu, E., Sahin, F. I., Haberal, M. (2013) Corchorus olitorius (jute) extract induced cytotoxicity and genotoxicity on human multiple myeloma cells (ARH-77). Pharma. Biol. 51, 766–770.CrossRefGoogle Scholar
  16. 16.
    İşeri, Ö. D., Körpe, D. A., Yurtcu, E., Sahin, F. I., Haberal, M. (2015) Seed priming to increase germination, drought tolerance and yield of cucumber. Acta Adv. Agr. Sci. 3, 42–53.Google Scholar
  17. 17.
    Kavalali, G., Tuncel, H. (1997) Anti-inflammatory activities of Urtica pilulifera. Pharma. Biol. 35, 138–140.Google Scholar
  18. 18.
    Keilig, K., Ludwig-Müller, J. (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot. Studies 5, 311–318.Google Scholar
  19. 19.
    Kessler, A., Halitschke, R., Diezel, C., Baldwin, I. T. (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuate. Oecologia 148, 280–292.CrossRefGoogle Scholar
  20. 20.
    Körpe, D. A., İşeri, Ö. D., Sahin, F. I., Cabi, E., Haberal, M. (2012) High-antibacterial activity of Urtica spp. seed extracts on food and plant pathogenic bacteria. Int. J. Food Sci. Nutr. 64, 355–362.CrossRefGoogle Scholar
  21. 21.
    Lequeux, H., Hermans, C., Lutts, S., Verbruggen, N. (2010) Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48, 673–682.CrossRefGoogle Scholar
  22. 22.
    Lidon, F. C., Ramalho, J., Henriques, F. S. (1993) Copper inhibition of rice photosynthesis. J. Plant Physiol. 142, 2–17.CrossRefGoogle Scholar
  23. 23.
    Lin, A. J., Zhang, X. H., Chen, M. M., Cao, Q. (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J. Environ. Sci. (China) 19, 596–602.CrossRefGoogle Scholar
  24. 24.
    Lo Cantore, P., Iacobellis, N. S., De Marco, A., Capasso, F., Senatore, F. (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J. Agric. Food Chem. 52, 7862–7866.CrossRefGoogle Scholar
  25. 25.
    Mathew, S., Abraham, T. E. (2006) Studies on the antioxidant activities of Cinnamon (Cinnamomum verum) bark extracts through in vitro models. Food Chem. 94, 520–528.CrossRefGoogle Scholar
  26. 26.
    Michalak, A. (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15, 523–530.Google Scholar
  27. 27.
    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.CrossRefGoogle Scholar
  28. 28.
    Ohkawa, H., Ohishi, N., Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.CrossRefGoogle Scholar
  29. 29.
    Saleh, A. M., Madany, M. M. Y. (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol. Biochem. 88, 27–35.CrossRefGoogle Scholar
  30. 30.
    Seth, C. S., Misra, V., Chauhan, L. K. S., Singh, R. R. (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicol. Environ. Safety 71, 711–716.CrossRefGoogle Scholar
  31. 31.
    Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Reg. 48, 127–135.CrossRefGoogle Scholar
  32. 32.
    Wang, S. Y., Jiao, H., Faust, M. (1991) Changes in ascorbate, glutathione and related enzyme activities during thiodiazuran-induced bud break of apple. Plant Physiol. 82, 231–236.CrossRefGoogle Scholar
  33. 33.
    Yildiz, M., Cigerci, İ. H., Konuk, M., Fidan, A. F., Terzi, H. (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and Comet assays. Chemosphere 75, 934–938.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Özlem Darcansoy İşeri
    • 1
    • 2
    Email author
  • Dİdem Aksoy Körpe
    • 1
  • Feride Iffet Sahin
    • 1
    • 3
  • Mehmet Haberal
    • 1
    • 4
  1. 1.Institute of Transplantation and Gene SciencesBaskent UniversityAnkaraTurkey
  2. 2.Department of Molecular Biology and Genetics, Faculty of Science and LettersBaskent UniversityAnkaraTurkey
  3. 3.Department of Medical Genetics, Faculty of MedicineBaskent UniversityAnkaraTurkey
  4. 4.Department General Surgery, Faculty of MedicineBaskent UniversityAnkaraTurkey

Personalised recommendations