Corchorus olitorius and Urtica pilulifera Extracts Alleviate Copper Induced Oxidative Damage and Genotoxicity in Tomato

Abstract

Copper cause oxidative damage in plant cells, and plant extracts are the sources of free radical scavengers. We tested the hypothesis that whether Corchorus olitorius (jute) and Urtica pilulifera (Roman nettle) seed extract treatments of germinated seeds affect copper induced oxidative and genotoxic damage or antioxidant response in tomato. Seedlings were exposed to toxic copper concentration (30 ppm) for 7 days. In one experimental group (treatment 1), extract (100 μg mL−1) was added to media. In the other group (treatment 2), tomato seeds were pre-soaked by the extract (100 μg mL−1) prior to germination and copper application. Malondialdehyde and endogenous H2O2 levels in the groups treated with extract and copper were significantly lower than that of the untreated groups. Pre-soaking seeds with the nettle extract solution significantly enhanced catalase activity under unstressed condition. Jute treatment also enhanced catalase activity under copper stress. Ascorbate peroxidase activity remained at unstressed level in copper treated groups. Extract treatments significantly decreased copper induced DNA damage in root nuclei. Jute seed extract contained salicylic acid and quercetin which can be correlated with the evoked effects. We demonstrated protective effect of plant extract treatments against copper stress of tomato seedlings prior to germination or during seedling development.

References

  1. 1.

    Anjum, N. A., Hasanuzzaman, M., Hossain, M. A., Thangavel, P., Roychoudhury, A., Gill, S. S., Rodrigo, M. A. M., Adam, V., Fujita, M., Kizek, R., Duarte, A. C., Pereira, E., Ahmad, I. (2015) Jacks of metal/metalloid chelation trade in plants–an overview. Front. Plant Sci. 6, 192.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Arora, A., Byrem, T. M., Nari, M. G., Strasburg, G. M. (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 373, 102–109.

    CAS  Article  Google Scholar 

  3. 3.

    Beckers, G. J. M., Conrath, U. (2007) Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10, 425–431.

    Article  Google Scholar 

  4. 4.

    Bernt, E., Bergmeyer, H. U. (1974) Inorganic peroxidasses. In: Bergmeyer, H. U. (ed.) Methods of Enzymatic Analysis. CRC Press, Boca Raton, pp. 2246–2248.

    Chapter  Google Scholar 

  5. 5.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  6. 6.

    Chance, B., Mahly, A. C. (1995) Assay of catalases and peroxidases. Methods Enzymol. 2, 764–817.

    Article  Google Scholar 

  7. 7.

    Conrath, U. (2011) Molecular aspects of defence priming. Trends Plant Sci. 16(10), 524–531.

    Google Scholar 

  8. 8.

    Doncheva, S., Nicolov, B., Ogneva, V. (1996) Effect of copper excess on the morphology of the nucleus in maize root meristem cells. Physiol. Plantarum 96, 118–122.

    CAS  Article  Google Scholar 

  9. 9.

    Ducic, T., Polle, A. (2005) Transport and detoxification of manganese and copper in plants. Braz. J. Plant Physiol. 17, 103–112.

    CAS  Article  Google Scholar 

  10. 10.

    Ghareib, H. R. A., Abdelhamed, M. S., Ibrahim, O. H. (2010) Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants. Weed Biol. Manag. 10, 64–72.

    Article  Google Scholar 

  11. 11.

    İşeri, Ö. D., Körpe, D. A., Sahin, F. I., Haberal, M. (2012) Evaluation of plant extracts of high antibacterial activity against Clavibacter michiganensis subsp. michiganensis for allelopathic effect on tomato seed germination. New Biotech. 29, 186.

    Article  Google Scholar 

  12. 12.

    İşeri, Ö. D., Körpe, D. A., Sahin, F. I., Haberal, M. (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol. Plantarum 35, 1905–1913.

    Article  Google Scholar 

  13. 13.

    İşeri, Ö. D., Körpe, D. A., Yurtcu, E., Sahin, F. I., Haberal, M. (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep. 30, 1713–1721.

    Article  Google Scholar 

  14. 14.

    İşeri, Ö. D., Sahin, F. I., Haberal, M. (2014) Sodium chloride priming improves salinity response of tomato (Lycopersium esculentum Mill.) at seedling stage. J. Plant Nutr. 37, 374–392.

    Article  Google Scholar 

  15. 15.

    İşeri, Ö. D., Yurtcu, E., Sahin, F. I., Haberal, M. (2013) Corchorus olitorius (jute) extract induced cytotoxicity and genotoxicity on human multiple myeloma cells (ARH-77). Pharma. Biol. 51, 766–770.

    Article  Google Scholar 

  16. 16.

    İşeri, Ö. D., Körpe, D. A., Yurtcu, E., Sahin, F. I., Haberal, M. (2015) Seed priming to increase germination, drought tolerance and yield of cucumber. Acta Adv. Agr. Sci. 3, 42–53.

    Google Scholar 

  17. 17.

    Kavalali, G., Tuncel, H. (1997) Anti-inflammatory activities of Urtica pilulifera. Pharma. Biol. 35, 138–140.

    Google Scholar 

  18. 18.

    Keilig, K., Ludwig-Müller, J. (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot. Studies 5, 311–318.

    Google Scholar 

  19. 19.

    Kessler, A., Halitschke, R., Diezel, C., Baldwin, I. T. (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuate. Oecologia 148, 280–292.

    Article  Google Scholar 

  20. 20.

    Körpe, D. A., İşeri, Ö. D., Sahin, F. I., Cabi, E., Haberal, M. (2012) High-antibacterial activity of Urtica spp. seed extracts on food and plant pathogenic bacteria. Int. J. Food Sci. Nutr. 64, 355–362.

    Article  Google Scholar 

  21. 21.

    Lequeux, H., Hermans, C., Lutts, S., Verbruggen, N. (2010) Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48, 673–682.

    CAS  Article  Google Scholar 

  22. 22.

    Lidon, F. C., Ramalho, J., Henriques, F. S. (1993) Copper inhibition of rice photosynthesis. J. Plant Physiol. 142, 2–17.

    Article  Google Scholar 

  23. 23.

    Lin, A. J., Zhang, X. H., Chen, M. M., Cao, Q. (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J. Environ. Sci. (China) 19, 596–602.

    CAS  Article  Google Scholar 

  24. 24.

    Lo Cantore, P., Iacobellis, N. S., De Marco, A., Capasso, F., Senatore, F. (2004) Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J. Agric. Food Chem. 52, 7862–7866.

    CAS  Article  Google Scholar 

  25. 25.

    Mathew, S., Abraham, T. E. (2006) Studies on the antioxidant activities of Cinnamon (Cinnamomum verum) bark extracts through in vitro models. Food Chem. 94, 520–528.

    CAS  Article  Google Scholar 

  26. 26.

    Michalak, A. (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15, 523–530.

    CAS  Google Scholar 

  27. 27.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.

    CAS  Article  Google Scholar 

  28. 28.

    Ohkawa, H., Ohishi, N., Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.

    CAS  Article  Google Scholar 

  29. 29.

    Saleh, A. M., Madany, M. M. Y. (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol. Biochem. 88, 27–35.

    CAS  Article  Google Scholar 

  30. 30.

    Seth, C. S., Misra, V., Chauhan, L. K. S., Singh, R. R. (2008) Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicol. Environ. Safety 71, 711–716.

    CAS  Article  Google Scholar 

  31. 31.

    Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q. (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Reg. 48, 127–135.

    CAS  Article  Google Scholar 

  32. 32.

    Wang, S. Y., Jiao, H., Faust, M. (1991) Changes in ascorbate, glutathione and related enzyme activities during thiodiazuran-induced bud break of apple. Plant Physiol. 82, 231–236.

    CAS  Article  Google Scholar 

  33. 33.

    Yildiz, M., Cigerci, İ. H., Konuk, M., Fidan, A. F., Terzi, H. (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and Comet assays. Chemosphere 75, 934–938.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Özlem Darcansoy İşeri.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

İşeri, Ö.D., Körpe, D.A., Sahin, F.I. et al. Corchorus olitorius and Urtica pilulifera Extracts Alleviate Copper Induced Oxidative Damage and Genotoxicity in Tomato. BIOLOGIA FUTURA 69, 300–312 (2018). https://doi.org/10.1556/018.68.2018.3.6

Download citation

Key words

  • Copper stress
  • Solanum lycopersicum
  • jute
  • Roman nettle
  • genotoxic damage