Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 3, pp 259–269 | Cite as

Isolation and Identification of a Growth Inhibitory Substance from Heliotropium indicum L.

  • Sirinapa ChaiponEmail author
  • Prapaipit Suwitchayanon
  • Arihiro Iwasaki
  • Kiyotake Suenaga
  • Hisashi Kato-Noguchi
Open Access
Article

Abstract

Heliotropium indicum L. belongs to the family Boraginaceae. The plant has been used as a folk medicine because it contains substances of various biological activities. It is also identified as a common weed which grows wildly in crop fields in tropical and subtropical regions of the world. However, there is little information on the allelopathic effect in this plant. Therefore, this study was undertaken to investigate the growth inhibitory effect and to identify the growth inhibitory substances in H. indicum. An aqueous methanol extract of H. indicum inhibited shoot and root growth of barnyard grass, foxtail fescue, timothy, cress, lettuce and rapeseed at concentrations higher than 10 mg dry weight equivalent extract/mL. The concentrations required for 50% growth inhibition (I50) of those test plants ranged from 3–282 mg dry weight equivalent extract/mL. The extract was then separated using a sequence of chromatographic fractionations and a growth inhibitory substance was isolated and identified by spectral analysis as methyl caffeate. Methyl caffeate inhibited the growth of lettuce and foxtail fescue at concentrations higher than 1.0 mM. The results suggest that methyl caffeate may contribute to the growth inhibitory effect of H. indicum and may play an important role in the allelopathic effect of H. indicum.

Key words

Growth inhibitory effect Heliotropium indicum aqueous methanol extract methyl caffeate growth inhibitory substance 

References

  1. 1.
    Abubakar, M. S., Musa, A. M., Ahmed, A., Hussaini, I. M. (2007) The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and Fulani tribes of Northern Nigeria. J. Ethnopharmacol. 111, 625–629.CrossRefGoogle Scholar
  2. 2.
    Abdulghader, K., Majid, N., Nabat, N. (2008) Chemical stress induced by Heliotrope (Heliotropium europaeum L.) allelochemicals and increased activity of antioxidant enzymes. Pak. J. Biol. Sci. 11, 915–919.CrossRefGoogle Scholar
  3. 3.
    Afef, L., Omezzine, F., Haouala, R. (2014) The impact of tunisian capparidaceae species on cytological, physiological and biochemical mechanisms in lettuce. S. Afr. J. Bot. 93, 222–230.CrossRefGoogle Scholar
  4. 4.
    Ali, K. A., Sakri, F. Q., Li, Q. X. (2012) Isolation and purification of allelochemicals from Cephalaria syriaca plant. Int. J. Bio. sci. 2, 90–103.Google Scholar
  5. 5.
    Arakawa, R., Yamaguchi, M. (2004) Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry. J. Am. Soc. Mass. Spectrom. 15, 1228–1236.CrossRefGoogle Scholar
  6. 6.
    Balachadran, C., Veeramuthu, D., Naif, A. A., Balakrishna, K., Nitin, P. K., Vikrant, S. R., Inshad, A. K., Savarimuthu, I. (2012) Antimicrobial and antimycrobacterial activities of methyl caffeate isolated from Solanum torvum Swartz. fruit. Indian J. Microbiol. 4, 676–681.CrossRefGoogle Scholar
  7. 7.
    Balachadran, C., Emi, N., Arun, Y., Yamamoto, Y., Ahilan, B., Sangeetha, B., Duraipandiyan, V., Inaguma, Y., Okamoto, A., Ignacimuthu, S., Al-Dhadi, N. A., Perumal, P. T. (2015) In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chem. Biol. Interact. 242, 81–90.CrossRefGoogle Scholar
  8. 8.
    Bailly, F., Robert, A. T., Olympe, T., Nathalie, J., Hubert, H., Philippe, C. (2013) Antiproliferative and apoptotic effects of the oxidative dimerization product of methyl caffeate on human breast cancer cells. Bioorg. Med. Chem. Lett. 23, 574–578.CrossRefGoogle Scholar
  9. 9.
    Das, S., Coku, A. (2014) Allelopathic and antimicrobial evaluation of two Indian weeds–Heliotropium indicum L. and Synedrella nodiflora L. Gaertn with phytochemical studies. Am. J. PharmTech R. 4, 367–377.Google Scholar
  10. 10.
    Dash, G. K., Abdulla, M. S. (2013) A review on Heliotropium indicum L. (Boraginaceae). Int. J. Pharm. Sci. Res. 4.4, 1253–1258.Google Scholar
  11. 11.
    Dayan, F. E., Howell, J., Weidenhamer, J. D. (2009) Dynamic root exudation of sorgoleon and its in planta mechanism of action. J. Exp. Bot. 60.7, 2107–2117.Google Scholar
  12. 12.
    Galinato, M. I., Moody, K., Piggin, C. M. (1999) Upland rice weeds of South and Southeast Asia. Philippines International Rice Research Institute, Makati, Philippines.Google Scholar
  13. 13.
    Gandhi, G. R., Savarimuthu, I., Michael, G. P., Ponnusamy, S. (2011) Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 670, 623–631.CrossRefGoogle Scholar
  14. 14.
    Ghori, K. M., Ghaffari, M. A., Hussain, S. N., Manzoor, M., Aziz, M., Sarwer, W. (2016) Ethnopharmacological, phytochemical and pharmacognostic potential of genus Heliotropium L. Turk. J. Pharm. Sci. 13, 259–280.CrossRefGoogle Scholar
  15. 15.
    Inbaraj, J. J., Chignell, C. F. (2004) Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol. 17, 55–62.CrossRefGoogle Scholar
  16. 16.
    Islam, M. S., Kato-Noguchi, H. (2016) Phytotoxicity assessment of Cyperus difformis (L.) towards a sustainable weed management option. J. Anim. Plant Sci. 26, 1765–1771.Google Scholar
  17. 17.
    Kadioglu, I., Yanar, Y. (2004) Allelopathic effects of plant extracts against seed germination of some weeds. Asian J. Plant Sci. 3, 472–475.CrossRefGoogle Scholar
  18. 18.
    Kugelman, M., Liu, W. C., Axelrod, M., McBride, T. J., Rao, K. V. (1976) Indicine-N-oxide: the antitumor principle of Heliotropium indicum. Lloydia. 39, 125–128.Google Scholar
  19. 19.
    Lara-Nunez, A., Romero-Romero, T., Ventura, J. L., Blancas, V., Anaya, A. L., Cruz-Ortega, R. (2006) Allelochemical stress caused inhibition of growth and oxidative damages in Lycopersicon esculentum Mill. Plant, Cell and Environment 29, 2009–2016.CrossRefGoogle Scholar
  20. 20.
    Lee, S. P., Jun, G., Yoon, E., Park, S., Yang, C. (2001) Inhibitory effect of methyl caffeate on Fos-Jun-DNA complex formation and suppression of cancer cell growth. Bull. Korean Chem. Soc., 22.10, 1131–1135.Google Scholar
  21. 21.
    Ma, L., Hongli, W., Ru, B., Li, Z., Xiaohong, Y., Dabin, H. (2011) Phytotoxic effects of Stellera chamaejasme L. root extract. Afr. J. Agric. Res. 6, 1170–1176.Google Scholar
  22. 22.
    Ma, D. W., Wang, Y. N., Wang, Y., Zhang, H., Liao, Y., He, H. (2015) Advance in allelochemical stress induced damage to plant cell. Acta Ecol. Sin. 35, 1640–1645.Google Scholar
  23. 23.
    Prevost, M. S., Delarue-Cochin, S., Marteaux, J., Colas, C., Van, R. C., Blondel, A., Malliavin, T., Corringer, P. J., Joseph, D. (2013) Identification of cinnamic acid derivatives as novel antagonist of the prokaryotic proton-gated ion channel GLIC. J. Med. Chem. 56, 4619–4630.CrossRefGoogle Scholar
  24. 24.
    Pyo, M. K., Yong, Y. L., Hye, Y. C. (2002) Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovate. Arch. Pharm. Res. 25, 325–328.CrossRefGoogle Scholar
  25. 25.
    Reddy, J. S, Rao, P. R., Reddy, M. S. (2002) Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats. J. Ethnopharmacol. 79, 249–251.CrossRefGoogle Scholar
  26. 26.
    Rice, E. L. (1984) Allelopathy, 2nd Ed. Academic Press, Orlando.Google Scholar
  27. 27.
    Suleiman, M. H. A., Banaga, F. A. (2016) Evaluation of allelopathic action of Adansonia digitate L. root extract on the germination and growth of lettuce, hibiscus and sorgum. Int. J. Pharm. Sci. Rev. Res. 37, 137–142.Google Scholar
  28. 28.
    Vilhena, K. S., Guilhon, G. M., Zoghbi, M. D., Santos, L. S., Souza Filho, A. P. (2014) Chemical investigation of Cyprus distans L. and inhibitory activity of scabequinone in seed germination and seedling growth bioassays. Nat. Prod. Res. 28.23, 2128–2133.Google Scholar
  29. 29.
    Wang, J., Jia, G., Junnan, Z., Jie, P., Tianxing, L., Zhihong, X. (2015) Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem. 171, 40–49.CrossRefGoogle Scholar
  30. 30.
    Waterhouse, D. F. (1993) The major arthropod pests and weeds of agriculture in southeast Asia: distribution, importance and origin. Brown Prior Anderson, Victoria, Australia.Google Scholar
  31. 31.
    Xiang, M., Hanwen, S., Jinyue, H., Yunjin, Y. (2011) Isolation, identification and determination of methyl caffeate, ethyl caffeate and other phenolic compounds from Polygonum amplexicaule var. sinense. J. Med. Plants Res. 5, 1685–1691.Google Scholar
  32. 32.
    Zhu, Y., Zhang, L. X., Zhao, Y., Huang, G. D. (2010) Unusual susquiterpene lactones with a new carbon skeleton and new acetylenes from Ajania przewalskii. Food Chem. 118, 228–238.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sirinapa Chaipon
    • 1
    Email author
  • Prapaipit Suwitchayanon
    • 1
    • 3
  • Arihiro Iwasaki
    • 2
  • Kiyotake Suenaga
    • 2
  • Hisashi Kato-Noguchi
    • 1
    • 3
  1. 1.Department of Applied Biological Science, Faculty of AgricultureKagawa UniversityMiki, KagawaJapan
  2. 2.Department of Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
  3. 3.The United Graduate School of Agriculture SciencesEhime UniversityEhimeJapan

Personalised recommendations