Advertisement

Acta Biologica Hungarica

, Volume 69, Issue 1, pp 86–96 | Cite as

Exogenous Salicylic Acid and Cytokinin Alter Sugar Accumulation, Antioxidants and Membrane Stability of Faba Bean

  • Samira Samea-Andabjadid
  • Kazem Ghassemi-GolezaniEmail author
  • Safar Nasrollahzadeh
  • Nosratollah Najafi
Article
  • 2 Downloads

Abstract

This research was conducted in a greenhouse to evaluate the effects of exogenous application of salicylic acid (SA) (1 mM) and 6-benzylaminopurine (BAP) (50 μM) on physiological performance of faba bean (Vicia faba) under different levels of NaCl salinity (0, 4, 8 and 12 dS/m). The experiment was arranged as factorial on the bases of randomized complete block design in three replications. Leaf Na+ content, root and leaf soluble sugars, antioxidant enzymes activities such as catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and lipid peroxidation increased, but K+, K+/Na+ and membrane stability index (MSI) decreased as a result of salt stress. However, foliar sprays of BAP and particularly SA reduced Na+ content and lipid peroxidation, while enhanced the K+ content, K+/Na+, soluble sugars, antioxidant enzymes activities and MSI under different levels of salinity. It was, therefore, concluded that exogenous application of these growth regulators (GR) can considerably improve salt tolerance and physiological performance of faba bean.

Keywords

Antioxidant enzymes 6-benzylaminopurine faba bean salinity salicylic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelraouf, E. A. A., Adss, I. A. A., Dakroury, M. Z. (2016) Effect of salinity on growth and genetic diversity of broad bean (Vicia faba L.) cultivars. Alexandria Sci. Exchange J. 37, 467–479.Google Scholar
  2. 2.
    Aebi, H. (1984) Catalase in vitro. Meth. Enzymol. 105, 121–126.PubMedGoogle Scholar
  3. 3.
    Arfan, M., Athar, H. R., Ashraf, M. (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 164, 685–694.PubMedGoogle Scholar
  4. 4.
    Azooz, M. M., Youssef, A. M., Ahmad, P. (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int. J. Plant Physiol. Biochem. 3, 253–264.Google Scholar
  5. 5.
    Barciszewski, J., Siboska, G., Rattan, S. I. S., Clark, B. F. C. (2000) Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul. 32, 257–265.Google Scholar
  6. 6.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.Google Scholar
  7. 7.
    Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R.A., Lagudah, E. S., Dennis, E. S., Tester, M., Munns, R. (2007) HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143, 1918–1928.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cakmak, I., Horst, J. (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468.Google Scholar
  9. 9.
    Chakrabarti, N., Mukherji, S. (2003) Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biol. Plantarum 46, 589–594.Google Scholar
  10. 10.
    Clarke, A., Desikan, R., Hurst, R. D. (2000) Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24, 667–677.Google Scholar
  11. 11.
    Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., Schroeder, J. I. (2014) Plant salt-tolerance mechanisms. Trends Plant Sci. 19, 371–379.PubMedPubMedCentralGoogle Scholar
  12. 12.
    El-Beltagi, H. S., Mohamed, A. A., Mekki, B. B. (2011) Differences in some constituents, enzymes activity and electrophoretic characterization of different rapeseed (Brassica napus L.) cultivars. Tom. XVIII. 1, 39–46.Google Scholar
  13. 13.
    Ghanem, M. E., Albacete, A., Martínez-Andújar, C., Acosta, M., Romero-Aranda, R., Dodd, I. C., Lutts, S., Pérez-Alfocea, F. (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J. Exp. Bot. 59, 3039–3050.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Giannopolitis, C. N., Ries, S. K. (1977) Superoxide dismutase I occurrence in higher plants. Plant Physiol. 59, 309–314.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., Cicek, N. (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 164, 728–736.PubMedGoogle Scholar
  16. 16.
    Hajiboland, R., Radpour, E., Pasbani, B. (2014) Effect of phosphorus defciency on drought stress tolerance in two tomato (Solanum lycopersum L.) cultivars J. Plant Res. (Iranian J. Biol.), 27, 788–803. (in English).Google Scholar
  17. 17.
    Hameed, A., Bibi, N., Akhter, J., Iqbal, N. (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in fag leaves of wheat genotypes under different levels of water defcit conditions. Plant Physiol. Biochem. 49, 178–185.Google Scholar
  18. 18.
    Hameed, M., Nawaz, T., Ashraf, M., Naz, N., Batool, R., Ahmad, M. S. A., Riaz, A. (2013) Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the salt range. Turk. J. Bot. 37, 715–724.Google Scholar
  19. 19.
    Jaleel, C. A., Lakshmanan, G. M., Gomathinayagam, M., Panneerselvam, R. (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. South Afric. J. Bot. 74, 126–132.Google Scholar
  20. 20.
    Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., Shabala, S. (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot. 64, 2255–2268.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnson, S. M., Doherty, S. J., Croy, R. R. D. (2003) Biphasic superoxide generation in potato tubers. A self amplifying response to stress. Plant Physiol. 13, 1440–1449.Google Scholar
  22. 22.
    Jones, M. M., Turner, N. C. (1980) Osmotic adjustment in expanding and fully expanded leaves of sunfower in response to water defcits. Aust. J. Plant Physiol. 7, 181–192.Google Scholar
  23. 23.
    Katerji, N., Van Hoorn, J. W., Hamdy, A., Mastrorilli, M. (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classifcation methods. Agric. Water Manage. 62, 37–66.Google Scholar
  24. 24.
    Kochert, G. (1978) Carbohydrate determination by the phenol sulfuric acid method. In: Hellebust, J. A., Craigie, J. S. (ed.) Handbook of Physiological Methods-Physiological and Biochemical Methods. Cambridge University Press, London, pp. 96–97.Google Scholar
  25. 25.
    Ma, X., Zhang, J., Huang, B. (2016) Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ. Exp. Bot. 125, 1–11.Google Scholar
  26. 26.
    Maas, E. V., Hoffman, G. J. (1977) Crop salt tolerance, current assessment. J. Irrig. Drain Div. ASCE. 103, 115–134.Google Scholar
  27. 27.
    Maghsoudi, A., Maghsoudi, K. (2008) Salt stress on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. Sci. 4, 351–358.Google Scholar
  28. 28.
    Mundree, S. G., Baker, B., Mowla, Sh., Peters, Sh., Marais, S., Willigen, C. V., Govender, K., Mdredza, A., Muyanga, S., Farrant, J. M., Thomson, J. A. (2002) Physiological and molecular insights into drought tolerance. Afr. J. Biotechnol. 1, 28–38.Google Scholar
  29. 29.
    Munns, R. (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239–250.Google Scholar
  30. 30.
    Munnus, R., James, R. A., Lanchli, A. (2006) Approaches to increasing the salt tolerance of wheat and other cereals. Plant Physiol. Biochem. 36, 767–772.Google Scholar
  31. 31.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specifc peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.Google Scholar
  32. 32.
    Pospíšilová, J., Synková, H., Rululcová, J. (2000) Cytokinins and water stress. Biol. Plantarum. 43, 321–328.Google Scholar
  33. 33.
    Sakr, M. T., Mohamed, Z. A., Atta, M. I., Zalama, M. T. (2014) Response of faba bean plants to application of some growth promoters under salinity stress conditions. J. Plant Prod. 5, 79–94.Google Scholar
  34. 34.
    Sarvajeet, S. G., Narendra, T. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plant. Plant Physiol. Biochem. 48, 909–930.Google Scholar
  35. 35.
    Shabala, S., Cuin, T. A. (2008) Potassium transport and plant salt tolerance. Physiol. Plant. 133, 651–669.PubMedGoogle Scholar
  36. 36.
    Sharhrtash, M., Mohsenzadeh, S., Mohabatkar, H. (2011) Salicylic acid alleviates paraquat oxidative damage in maize seedling. Asian J. Exp. Biol. Sci. 2, 377–382.Google Scholar
  37. 37.
    Sidari, M., Santonoceto, C., Anastasi, U., Preiti, G., Muscolo, A. (2008) Variations in four genotypes of lentil under NaCl-salinity stress. Am. J. Agric. Biol. Sci. 3, 410–416.Google Scholar
  38. 38.
    Sreenivasulu, N., Grimm, B., Wobns, U., Weschke, W. (2000) Different response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedling of foxtail millet. Physiol. Plant. 109, 435–442.Google Scholar
  39. 39.
    Stevens, J., Senaratna, T., Sivasithamparam, K. (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. ‘Roma’), associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul. 49, 77–83.Google Scholar
  40. 40.
    Tester, M., Davenport, R. (2003) Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Werner, T., Holst, K., Pörs, Y., Guivarc’h, A., Mustroph, A., Chriqui, D., Grimm, B., Schmülling, T. (2008) Cytokinin defciency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 59, 2659–2672.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Xu, Q., Xu, X., Zhao, Y., Jiao, K., Herbert, J. S., Hao, L. (2008) Salicylic acid, hydrogen peroxide and calcium-induced salinity tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul. 54, 249–259.Google Scholar
  43. 43.
    Yasmeen, A., Basra, S., Farooq, M., Ur Rehman, H., Hussain, N. (2013) Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 69, 225–233.Google Scholar
  44. 44.
    Yusuf, M., Aiman Hasan, S., Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A. (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J. Integr. Plant Biol. 50, 1096–1102.PubMedGoogle Scholar
  45. 45.
    Zörb, C., Schamit, S., Need, A., Karl, S. (2004) The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by mitigation of symptoms and not by specifc adaptation. J. Plant Sci. 167, 91–100.Google Scholar

Copyright information

© Akadémiai Kiadó Zrt. 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Samira Samea-Andabjadid
    • 1
  • Kazem Ghassemi-Golezani
    • 1
    Email author
  • Safar Nasrollahzadeh
    • 1
  • Nosratollah Najafi
    • 2
  1. 1.Department of Plant Eco-physiology, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Soil Science, Faculty of AgricultureUniversity of TabrizTabrizIran

Personalised recommendations