Establishment of an Efficient Plant Regeneration Culture Protocol and Achievement of Successful Genetic Transformation in Jatropha curcas L.


An efficient and reproducible protocol is described for shoot-bud regeneration and Agrobacterium tumefaciens-mediated genetic transformation of J. curcas. Treating the explants with high concentrations (5–120 mg/L) of TDZ for short durations (5–80 min) before inoculation culture increased significantly the regeneration frequency and improved the quality of the regenerated buds. The highest shoot-buds induction rate (87.35%) was achieved when petiole explants were treated with 20 mg/L TDZ solution for 20 min and inoculated on hormone-free MS medium for 30 days. Regenerated shoots of 0.5 cm or a little longer were isolated and grafted to seedling stocks of the same species, and then the grafted plantlets were planted on half-strength MS medium containing 0.1 mg/L IBA and 2 mg/L sodium nitroprusside (SNP). This grafting strategy was found to be very effective, to obtain that healthy grafted plantlets ready for acclimatization within 20 days. By the above mentioned protocol and with general Agrobacterium–mediated genetic transformation methods only 65 days were needed to obtain intact transgenic plants.


  1. 1.

    Adebowale, K. O., Adedire, C. O. (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr. J. Biotechnol. 5, 901–906.

    CAS  Google Scholar 

  2. 2.

    Attaya, A. S., Geelen, D., Belal, A. E. H. (2012) Progress in Jatropha curcas tissue culture. Am-Eurasian J. Sustain. Agric. 6, 6–13.

    Google Scholar 

  3. 3.

    Deore, A. C., Johnson, T. S. (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotech Rep. 2, 10–15.

    Article  Google Scholar 

  4. 4.

    Hamilton, C. M., Frary, A., Lewis, C. (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. 93, 9975–9979.

    CAS  Article  Google Scholar 

  5. 5.

    Höfgen, R., Willmitzer, L. (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16, 9877.

    Article  Google Scholar 

  6. 6.

    Jaganath, B., Subramanyam, K., Mayavan, S. (2014) An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasm. 251, 591–601.

    CAS  Article  Google Scholar 

  7. 7.

    Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.

    CAS  Article  Google Scholar 

  8. 8.

    Jefferson, R. A., Kavanagh, T. A., Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. E. M. B. O. J. 6, 3901–3907.

    CAS  Google Scholar 

  9. 9.

    Liberalino, A. A. A., Bambirra, E. A., Moraes-Santos, T. (1988) Jatropha curcas L. seeds: chemical analysis and toxicity. Arq. Biol. Technol. 31, 539–550.

    CAS  Google Scholar 

  10. 10.

    Khemkladngoen, N., Cartagena, J. A., Fukui, K. (2011) Physical wounding-assisted Agrobacteriummediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L. Plant Biotechnol. Rep. 5, 235–243.

    Article  Google Scholar 

  11. 11.

    Kumar, N., Anand, K. G. V., Reddy, M. P. (2011) In vitro regeneration from petiole explants of nontoxic Jatropha curcas. Ind. Crops Prod. 33, 146–151.

    CAS  Article  Google Scholar 

  12. 12.

    Kumar, N., Reddy, M. P. (2012) Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: a candidate biodiesel plant. Ind. Crops Prod. 39, 62–68.

    CAS  Article  Google Scholar 

  13. 13.

    Liberalino, A. A. A., Bambirra, E. A., Moraes-Santos, T. (1988) Jatropha curcas L. seeds: chemical analysis and toxicity. Arquivos de biologia e tecnologi. 31, 539–550.

    CAS  Google Scholar 

  14. 14.

    Liu, Y., Lu, J., Zhu, H. (2016) Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L. Biotechnol. Biotec. Eq. 30, 907–914.

    CAS  Article  Google Scholar 

  15. 15.

    Liu, Y., Tong, X., Hui, W. (2015) Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. Biotechnol. Biotec. Eq. 29, 479–488.

    CAS  Article  Google Scholar 

  16. 16.

    Liu, Y., Yin, X. G., Zhu, H. B. (2016) An efficient protocol for inducing regeneration in physic Nut (Jatropha curcas L.). Bangladesh J. Botan. 45, 87–93.

    CAS  Google Scholar 

  17. 17.

    Liu, Y., Yu, L., Fu, Y. L. (2012) Development of an in vitro grafting method for the enhancement of growth of isolated shoots and buds in soybean (Glycine max L.). Biomed. Eng. Biotechnol. 1, 1003–1006.

    Google Scholar 

  18. 18.

    Liu, Y., Yu, L., Zhang, Q. (2013) High concentration short duration treatment of benzyladenine stimulates adventitious bud regeneration from hypocotyl explants in soybean. Adv. Mater. Res. 647, 331–337.

    Article  Google Scholar 

  19. 19.

    Liu, Z. L., Liu, Y., Yang, Y. S. (2016) An Agrobacterium - mediated genetic transformation method of Jatropha curcas. Patent filed China and PCT. Authorization No. ZL201410275476.6, 2016-05-25. (in Chinese).

    Google Scholar 

  20. 20.

    Lodhi, M. A., Ye, G. N., Weeden, N. F. (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Bio. Rep. 12, 6–13.

    CAS  Article  Google Scholar 

  21. 21.

    Lu W. (2003) Induction of callus from Jatropha curcas and rapid propagation. Chin. J. Appl. Environ. Biol. 9, 127–130.

    CAS  Google Scholar 

  22. 22.

    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    CAS  Article  Google Scholar 

  23. 23.

    Ötvös, K., Pasternak, T. P., Miskolczi, P. (2005) Nitric oxide is required for, and promotes auxinmediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. The Plant J. 43, 849–860.

    Article  Google Scholar 

  24. 24.

    Petri, C., Wang, H., Alburquerque, N. (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep. 27, 1317–1324.

    CAS  Article  Google Scholar 

  25. 25.

    Petřivalský, M., Vaníčková, P., Ryzí, M. (2012) The effects of reactive nitrogen and oxygen species on the regeneration and growth of cucumber cells from isolated protoplasts. Plant Cell Tiss. Org. Cult. 108, 237–249.

    Article  Google Scholar 

  26. 26.

    Wei, Q., Lu, W. D., Liao, Y. (2004) Plant regeneration from epicotyl explant of Jatropha curcas. J. Plant Physiol. Mol. Biol. 30, 475–478.

    Google Scholar 

  27. 27.

    Zhou, L., Ni, E., Yang, J. (2013) Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PloS One 8, e65139.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ying Liu.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, G., Yang, Y. et al. Establishment of an Efficient Plant Regeneration Culture Protocol and Achievement of Successful Genetic Transformation in Jatropha curcas L.. BIOLOGIA FUTURA 68, 428–442 (2017).

Download citation


  • Jatropha curcas
  • Petiole explants
  • Plant regeneration
  • Genetic transformation