Acta Biologica Hungarica

, Volume 68, Issue 4, pp 388–397 | Cite as

Cinnamic Acid and Fish Flour Affect Wheat Phenolic Acids and Flavonoid Compounds, Lipid Peroxidation, Proline Levels Under Salt Stress

  • Bergüzar Karadağ
  • Nılgün Candan YücelEmail author


To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.


Cinnamic acid fish flour phenolic biosynthesis salinity stress wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu El-Soud, W., Hegab, M. M., Abdelgawad, H., Zinta, G., Asard, H. (2013) Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol. Biochem. 71, 173–183.CrossRefGoogle Scholar
  2. 2.
    Aebi, H. E. (1983) Catalase. In: Bergmeyer, H. U. (ed.), Methods of Enzymatic Analysis, vol. 3. Verlag Chemice, Deerfield Beach FL, pp. 273–286.Google Scholar
  3. 3.
    Anonymus (2000) Fisheries statistics. State Institute of Statistics, Prime Ministry, Republic of Turkey, Ankara.Google Scholar
  4. 4.
    Bates, L., Waldren, R. P., Teare, I. D. (1973) Rapid determination of free proline for water-stress studies. Plant Soi. 39, 205–207.CrossRefGoogle Scholar
  5. 5.
    Baziramakenga, R., Leroux, G. D., Simard, R. R. (1995) Effects of benzoic and Cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21, 1271–1285.CrossRefGoogle Scholar
  6. 6.
    Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  7. 7.
    Boscolo, W. R. (2001) Desempenhoe caracteristicas de carcaqa de machos revertidos de tilapias do Nilo (Oreochromisniloticus), linhagens tailandesa e comumnas fases iniciais e de crescimento. Revista Brasileire Zootec. 30, 1391–1396.CrossRefGoogle Scholar
  8. 8.
    Buege, J. A., Aust, S. D. (1978) Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310.CrossRefGoogle Scholar
  9. 9.
    Crosti, N., Serviden, T., Bajer, J., Serra, A. (1987) Modification of 6-hydroxydopamine technique for the correct determination of superoxide dismutase. J. Clin. Chem. Clin. Biochem. 25, 265–272.PubMedGoogle Scholar
  10. 10.
    Dincer, T., Cakli, S., Kilinc, B., Tolasa, S. (2010) Amino acids and fatty acid composition content of fish sauce. J. Animal Vet. Advan. 9, 311–315.CrossRefGoogle Scholar
  11. 11.
    Du, L., Ali, G. S., Simons, K. A., Hou, J., Yang, T., Reddy, A. S., Poovanah, B. W. (2009) Ca2+/ calmodulin regulates salicylic-acid-mediated plant immunity. Natur. 457, 1154–1158.CrossRefGoogle Scholar
  12. 12.
    Hayat, Q., Hayat, S., Irfan, M., Ahmad, A. (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ. Exp. Bot. 68, 14–25.CrossRefGoogle Scholar
  13. 13.
    Hodgins, D. S. (1971) Yeast phenylalanine ammonia-lyase. Purification, properties, and the identification of catalytically essential dehydroalanine. J. Biol. Chem. 246, 2977–2985.Google Scholar
  14. 14.
    Horii, A., McCue, P., Shetty, K. (2007) Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresource Technol. 98, 2170–2177.CrossRefGoogle Scholar
  15. 15.
    Keutgen, A. J., Pawelzik, E. (2008) Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem. 107, 1413–1420.CrossRefGoogle Scholar
  16. 16.
    Lee, J., Scagel, C. F. (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 115, 650–656.CrossRefGoogle Scholar
  17. 17.
    Milic, B.L., Dijilas, S. M., Canadanovic-Brunet, J. M. (1998) Antioxidative activity of phenolic compounds on metal-ion breakdown of lipid peroxidation system. Food Chem. 61, 443–447.CrossRefGoogle Scholar
  18. 18.
    McCue, P., Zheng, Z., Pinkham, J. L., Shetty, K. (2000) A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochem. 35, 600–613.CrossRefGoogle Scholar
  19. 19.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.Google Scholar
  20. 20.
    Nino, H. V., Shaw, W. (1976) Determination of ascorbic acid. In: Tietz, N. W. (ed.), Vitamins Fundamental of Clinical Chemistry. pp. 542–550.Google Scholar
  21. 21.
    Ng, P. L., Ferrarese, M. L. L., Huber, D. A., Ravagnani, A. L. S., Ferrarese-Filho, O. (2003) Canola (Brassica napus L.) seed germination influenced by cinnamic acid and benzoic acids and derivatives: effects on peroxidase. Seed Sci. Technol. 31, 39–46.CrossRefGoogle Scholar
  22. 22.
    Salvador, V. H., Lima, R. B., Dantas dos Santos, W., Soares, A. R., Böhm, P. A. F., Marchiosi, R., Ferrarese, M. L. L., Ferrarese-Filho, O. (2013) Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLOS ONE 8, e69105, doi:10.1371/journal.pone.0069105.CrossRefGoogle Scholar
  23. 23.
    Saleh, A. M., Madany, M. M. Y. (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol. Biohem. 88, 27–35.CrossRefGoogle Scholar
  24. 24.
    Shetty K. (1997) Biotechnology to harness the benefits of dietary phenolics; focus on Lamiaceae. Asia Pacific J. Clin. Nutr. 6, 162–171.Google Scholar
  25. 25.
    Singh, H. P., Kaur, S., Batish, D. R., Kohli, R. K. (2009) Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regul. 57, 21–30.CrossRefGoogle Scholar
  26. 26.
    Verstraeten, S. V., Keen, C. L., Schmitz, H. H., Fraga, C. G., Oteiza, P. L. (2003) Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic. Biol. Med. 34, 84–92.CrossRefGoogle Scholar
  27. 27.
    Wu, F. Z., Pan, K., Zhou, X. Y. (2005) Effects of Cinnamic acid on physiological characteristics of Cucumis sativus seedling. Chin. J. Appl. Ecol. 16, 915–918.Google Scholar
  28. 28.
    Zhang, J. Y., Wu, F. Z. (2007) Effects of salt stress on membrane lipid peroxidation and proline content in cucumber cultivars. China Vegetable. 7, 12–15.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceDokuz Eylul UniversityIzmirTurkey

Personalised recommendations