Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 4, pp 368–375 | Cite as

Hydrogen Peroxide Induced Oxidative Damage on Mechanical Properties of the Articular Cartilage

  • Ekrem CicekEmail author
Article

Abstract

Articular cartilage has unique mechanical and physicochemical properties which are responsible for its load carrying capabilities. This work investigates the effects of hydrogen peroxide induced oxidative damage on mechanical properties of articular cartilage. Bovine articular cartilage was exposed to hydrogen peroxide for a week. Dynamic and static mechanical tests applied to calculate articular cartilage compressive modulus. We observed higher control curve slopes than that of hydrogen peroxide curves which account for lesser stiffness values in the exposed articular cartilage. For the instantaneous experiments, results were statistically significant (p = 0.01, p > 0.05). Here report that hydrogen peroxide induced oxidative damage causes reduction in the stiffness of the articular cartilage.

Keywords

Antiseptic articular cartilage compressive modulus hydrogen peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyeh, B. S., Dibo, S. A., Hayek, S. N. (2009) Wound cleansing, topical antiseptics and wound healing. Int. Wound J. 6, 420–430.CrossRefGoogle Scholar
  2. 2.
    Bader, D. L., Kempson, G. E., Egan, J., Gilbey, W., Barrett, A. J. (1992) The effects of selective matrix degradation on the short-term compressive properties of adult human articular cartilage. Biochim. Biophys. Acta. 1116, 147–154.CrossRefGoogle Scholar
  3. 3.
    Bhatti, F. U. R., Mehmood, A., Wajid, N., Rauf, M., Khan, S. N., Riazuddin, S. (2013) Vitamin e protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm. Res. 62, 781–789.CrossRefGoogle Scholar
  4. 4.
    Bonifacio, A., Beleites, C., Vittur, F., Marsich, E., Semeraro, S., Paoletti, S., Sergoa, V. (2010) Chemical imaging of articular cartilage sections with Raman mapping, employing uni- and multivariate methods for data analysis. Analys. 135, 3193–3204.CrossRefGoogle Scholar
  5. 5.
    Brandl, A., Hartmann, A., Bechmann, V., Graf, B., Nerlich, M., Angele, P. (2011) Oxidative stress induces senescence in chondrocytes. J. Orthop. Res. 29, 1114–1120.CrossRefGoogle Scholar
  6. 6.
    Cicek E. (2016) Effect of X-ray irradiation on articular cartilage mechanical properties. Acta Phys. Pol.. 129, 200–202.CrossRefGoogle Scholar
  7. 7.
    Drosou, A., Falabella, A., Kirsner, R. (2003) Antiseptics on wounds: an area of controversy. Wound. 15, 149–166.Google Scholar
  8. 8.
    Greenwald, R. A., Moy, W. W. (1979) Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum. 22, 251–259.CrossRefGoogle Scholar
  9. 9.
    Henrotin, Y. E., Bruckner, P., Pujol, J. P. L. (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr. Cartil. 11, 747–755.CrossRefGoogle Scholar
  10. 10.
    Huber, M., Trattnig, S., Lintner, F. (2000) Anatomy, Biochemistry, and Physiology of Articular Cartilage. Invest. Radiol. 35, 573–580.CrossRefGoogle Scholar
  11. 11.
    Julkunen, P., Wilson, W., Jurvelin, J. S., Rieppo, J., Qu, C. J., Lammi, M. J., Korhonen, R. K. (2008) Stress-relaxation of human patellar articular cartilage in unconfined compression: Prediction of mechanical response by tissue composition and structure. J. Biomech. 41, 1978–1986.CrossRefGoogle Scholar
  12. 12.
    Korhonen, R. K., Laasanen, M. S., Toyras, J., Lappalainen, R., Helminen, H. J., Jurvelin, J. S. (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36, 1373–1379.CrossRefGoogle Scholar
  13. 13.
    Laasanen, M. S., Töyräs, J., Korhonen, R. K., Rieppo, J., Saarakkala, S., Nieminen, M., Hirvonen, J., Jurvelin, J. (2003) Biomechanical properties of knee articular cartilage. Biorheolog. 40, 133–140.Google Scholar
  14. 14.
    Lean, J., Davies, J., Fuller, K., Jagger, C., Kirstein, B., Partington, G., Urry, Z., Chambers, T. (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J. Clin. Invest. 112, 915–923.CrossRefGoogle Scholar
  15. 15.
    Monboisse, J. C., Braquet, P., Randoux, A., Borel, J. P. (1983) Non-enzymatic degradation of acidsoluble calf skin collagen by superoxide ion: protective effect of flavonoids. Biochem. Pharmacol. 32, 53–58.CrossRefGoogle Scholar
  16. 16.
    Mow, V. C., Ratcliffe, A., Poole, A. R. (2000) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterial. 13, 67–97.CrossRefGoogle Scholar
  17. 17.
    Na, J. Y., Song, K., Kim, S., Kwon, J. (2016) Rutin protects rat articular chondrocytes against oxidative stress induced by hydrogen peroxide through SIRT1 activation. Biochem. Biophys. Res. Commun. 473, 1301–1308.Google Scholar
  18. 18.
    Omata, S., Sawae, Y., Murakami, T. (2012) Tissue Development and Mechanical Property in the Regenerated-Cartilage Tissue. In: Ceccherini-Nelli, L., Matteoli, B. (ed.) Biomedical Tissue Culture. InTech, Italy, pp. 1–8.Google Scholar
  19. 19.
    Ouyang, X., Wei, B., Hong, S. D., Wang, J. R., Xin, F., Wang, L., Yang, X. W., Wang, L. M. (2015) Study on the Mechanisms of Cartilage Tissue Damage Caused by Hydrogen Peroxide. Cell Biochem. Biophys. 72, 343–348CrossRefGoogle Scholar
  20. 20.
    Röhner, E., Kolar, P., Seeger, J. B., Arnholdt, J., Thiele, K., Perka, C., Matziolis, G. (2011) Toxicity of antiseptics against chondrocytes: What is best for the cartilage in septic joint surgery? Int. Orthop. 35, 1719–1723.CrossRefGoogle Scholar
  21. 21.
    Schaumburger, J., Beckmann, J., Springorum, H., Handel, M., Anders, S., Kalteis, T., Grifka, J., Rath, B. (2010) Toxizität lokaler Antiseptika auf Chondrozyten in vitro. Z. Orthop. Unfall. 148, 39–43.CrossRefGoogle Scholar
  22. 22.
    Young, I. C., Chuang, S. T., Hsu, C. H., Sun, Y. J., Lin, F. H. (2016) C-phycocyanin alleviates osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress. Int. J. Biol. Macromol. 93, 852–859.CrossRefGoogle Scholar
  23. 23.
    Zhuang, C., Xu, N. W., Gao, G. M., Ni, S., Miao, K. S., Li, C. K., Wang, L. M., Xie, H. G. (2016) Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int. J. Biol. Macromol. 87, 322–328.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science & ArtMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations