Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 3, pp 310–320 | Cite as

Screening of Some Biological Activities of Alyssum Fulvescens var. Fulvescens Known as Ege Madwort

  • Cennet OzayEmail author
  • Ramazan Mammadov
Article

Abstract

In this research, the phenolic composition, antioxidant, antibacterial and cytotoxic activities of the methanolic extracts obtained from Alyssum fulvescens var. fulvescens aerial parts known as Ege kuduzotu in western Turkey, were firstly investigated. The antioxidant activity of the extract was determined by DPPH, metal chelating, phosphomolybdenum, β-carotene/linoleic acid and ferric reducing power assays. Moreover, total phenolic and flavonoid contents in the extract were investigated. The brine shrimp (Artemia salina L.) lethality test was used to investigate for the possible cytotoxic activity of the extract. Microdilution broth method was used to study antibacterial potency of extract against Gram-positive and Gram-negative bacteria. The extract exhibited good biological activities. Total phenolic and flavonoid contents in the extract were significantly correlated with antioxidant potentials. HPLC analysis showed that chlorogenic acid was the major phenolic in extract tested. The results indicated that the extract of A. fulvescens var. fulvescens may be considered as a potential source of biological agents and in vivo investigations are needed to test the biological effects of A. fulvescens var. fulvescens.

Keywords

Alyssum fulvescens var. fulvescens antioxidant activity cytotoxicity phenolic composition HPLC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aktumsek, A., Zengin, G., Guler, G. O., Cakmak, Y. S., Duran, A. (2013) Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem. Toxicol. 55, 290–296.CrossRefGoogle Scholar
  2. 2.
    Arvouet-Grand, A., Vennat, B., Pourrat, A., Legret, P. (1994) Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 49, 462–468.PubMedGoogle Scholar
  3. 3.
    Bednarek, P. (2012) Sulfur-containing secondary metabolites frof Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chembiochem. 13, 1846–1859.CrossRefGoogle Scholar
  4. 4.
    Caponio, F., Alloggio, V., Gomes, T. (1999) Phenolic compounds of virgin olive oil: influence of paste preperation techniques. Food Chem. 64, 203–209.CrossRefGoogle Scholar
  5. 5.
    Davis, P. H. (1965) Flora of Turkey and the East Aegean Islands. Vols 1–10, Edinburg Univ.Google Scholar
  6. 6.
    Dorman, H. J. D., Peltoketo, A., Hiltunen, R., Tikkanen, M. J. (2003) Characterization of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 83, 255–262.CrossRefGoogle Scholar
  7. 7.
    Du, G. R., Li, M. J., Ma, F. W., Liang, D. (2009) Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113, 557–562.CrossRefGoogle Scholar
  8. 8.
    Dudley, T. R. (1966) Ornamental madworts (Alyssum) and the correct name of the goldentuft Alyssum. Arnoldia 26, 33–45.Google Scholar
  9. 9.
    Ertaş, A., Gören, A. C., Haşimi, N., Tolan, V., Kolak, U. (2015) Evaluation of antioxidant, cholinesterase inhibitory and antimicrobial properties of Mentha longifolia subsp. noeana and its secondary metabolites. Rec. Nat Prod. 9, 105–115.Google Scholar
  10. 10.
    Fahey, J. W., Zalcmann, A. T., Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51.CrossRefGoogle Scholar
  11. 11.
    Hall, J. C., Sytsma, K. J., Iltis, H. H. (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 89, 1826–1842.CrossRefGoogle Scholar
  12. 12.
    Harwig, J., Scott, P. M. (1971) Brine shrimp (Artemia salina L.) larvae as a screening system for fungal toxins. Appl. Microbiol. 2, 1011–1016.Google Scholar
  13. 13.
    Kalia, V. C. (2013) Quorum sensing inhibitors: An overview. Biotechnol. Adv. 31, 224–245.CrossRefGoogle Scholar
  14. 14.
    Krishnaraju, A. V., Rao, T. V. N., Sundararaju, D., Vanisreeb, M., Tsayb, H. S., Subbaraju, G. V. (2005) Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. Int. J. Appl. Sci. Eng. 3, 125–134.Google Scholar
  15. 15.
    Lee, T. H., Chen, Y. M., Chou, H. N. (1999) Toxicity of cyanobacterial strains using Artemia salina in comparison with the mouse bioassay. Acta Zoologica Taiwanica 10, 1–8.Google Scholar
  16. 16.
    Mammadov, R. (2014) Secondary Metabolites in Spermatophyta. Nobel Press, Ankara, Turkey.Google Scholar
  17. 17.
    Manian, R., Anusuya, N., Siddhuraju, P., Manian, S. (2008) The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camelia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem. 107, 1000–1007.CrossRefGoogle Scholar
  18. 18.
    Mart, S. (2006) An Ethanobotanical Investigation of the Natural Plants Using by Inhabitants in Bahce and Hasanbeyli Districts of Osmaniye Province. MSc Thesis. Univ. Inst. Nat. and Appl. Sci., Dept. of Biol., Cukurova, Turkey.Google Scholar
  19. 19.
    Martínez, A., Estévez, J. C., Silva-Pando, F. J. (2012) Antioxidant activity, total phenolic content and skin care properties of 35 selected plants from Galicia (NW Spain). Front Life Sci. 6, 77–86.CrossRefGoogle Scholar
  20. 20.
    NCCLS (National Committee for Clinical Laboratory Standards). (1999) Performance standards for antimicrobial susceptibility testing. 9th International Supplement. M100-S9, Wayne Pa.Google Scholar
  21. 21.
    Oksana, S., Marian, B., Mahendra, R., Bo, S. H. (2012) Plant phenolic compounds for food, pharmaceutical and cosmetics production. J. Med. Plants Res. 6, 2526–2539.Google Scholar
  22. 22.
    Oyaizu, M. (1986) Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Jpn J. Nutr. 44, 307–315.CrossRefGoogle Scholar
  23. 23.
    Ozay, C., Mammadov, R. (2016) Assessment of some biological activities of Alyssum L. known as madwort. Acta Pol. Pharm. Drug Res. 73, 1213–1220.Google Scholar
  24. 24.
    Ozay, C., Mammadov, R., Tasdelen, G., Karagur, E. R., Akca, H. (2015) Potential antioxidant, antiproliferative and hepatoprotective effects of Crataegus meyeri. J. Food Biochem. 39, 548–553.CrossRefGoogle Scholar
  25. 25.
    Prieto, P., Pineda, M., Aguilar, M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphormolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 269, 337–341.CrossRefGoogle Scholar
  26. 26.
    Shahidi, F., Wanasundara, P. K. J. P. D. (1992) Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32, 67–103.CrossRefGoogle Scholar
  27. 27.
    Shimer, H. W. (1943) Origin and Significance of Plant Names. South Shore Nature Club, Hingham/Massachusetts.Google Scholar
  28. 28.
    Slinkard, K., Singleton, V. L. (1977) Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Vitic. 28, 49–55.Google Scholar
  29. 29.
    Sokmen, A., Gulluce, M., Akpulat, H. A., Daferera, D., Tepe, B., Polissiou, M., Sokmen, M., Sahin, F. (2004) The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 15, 627–664.CrossRefGoogle Scholar
  30. 30.
    Souri, E., Amin, G., Farsam, H., Barazandeh Tehrani, M. (2008) Screening of antioxidant activity and phenolic content of 24 medicinal plant extracts. DARU J. Pharm. Sci. 16, 83–87.Google Scholar
  31. 31.
    Wu, C., Chen, F., Wang, X., Kim, H. J., He, G., Haley-Zitlin, V., Huang, G. (2006) Antioxidant constituents in fever few (Tanacetum parthenium) extract and their chromatographic quantification. Food Chem. 96, 220–227.CrossRefGoogle Scholar
  32. 32.
    Zia-Ul-Haq, M., Shah, M. R., Qayum, M., Ercisli, S. (2012) Biological screening of selected flora of Pakistan. Bio Res. 45, 375–379.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science and LiteraturePamukkale UniversityDenizliTurkey

Personalised recommendations