Morphometric Characteristics and COI Haplotype Diversity of Arctodiaptomus Spinosus (Copedoda) Populations in Soda Pans in Hungary

Abstract

Arctodiaptomus spinosus (Daday, 1891) is a characteristic species of the soda pan zooplankton in the Great Hungarian Plain. The biogeographical distribution of the species is interesting, since its range expands from the Pannonian Biogeographic region to the other side of the Carpathians, occurring in saline lakes in Eastern Anatolia, Armenia, Iran and in temporary waters in Ukraine. Our investigations focused on the morphometric characteristics and the COI haplotype diversity of four Hungarian populations in the Kiskunság area. We detected substantial morphological differences between the Böddi-szék population and the rest of the sampling sites, however considerable differences were not observable in the COI haplotypes in the populations. The 20 animals investigated for COI haplotypes belonged to the same haplotype network. Tajima’s D indicated departures from the neutral Wright–Fisher population model and suggested population expansion. The genetic composition of Arctodiaptomus spinosus populations in the Kiskunság area is rather uniform.

References

  1. 1.

    Bartholmé, S., Samchyshyna, L., Santer, B., Lampert, W. (2005) Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnology and Oceanography 50, 923–929.

    Article  Google Scholar 

  2. 2.

    Boros, E., Bánfi, S., Forró, L. (2006) Anostracans and microcrustaceans as potential food sources of waterbirds on sodic pans of the Hungarian plain. Hydrobiologia 567, 341–349.

    Article  Google Scholar 

  3. 3.

    Boros, E., Forró, L., Gere, G., Kiss, O., Vörös, L., Andrikovics, S. (2008) The role of aquatic birds in the regulation of trophic relationships of continental soda pans in Hungary. Acta Zool. Acad. Sci. Hung. 54, 189–206.

    Google Scholar 

  4. 4.

    Boros, E., V.-Balogh, K., Vörös, L., Horváth, Z. (2017) Multiple extreme environmental conditions of intermittent sodapans in the Carpathian Basin (Central Europe). Limnologica 62, 38–46.

    CAS  Article  Google Scholar 

  5. 5.

    Clement, M., Posada, D., Crandall, K. A. (2000) Tcs: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1660.

    CAS  Article  Google Scholar 

  6. 6.

    Conway, D. V. P., McFadzen, I. R. B., Tranter, P. R. G. (1994) Digestion of copepod eggs by larval turbof Scophthalmus maximus and egg viability following gut passage. Marine Ecol. Progr. Series 106, 303–309.

    Article  Google Scholar 

  7. 7.

    Cristescu, M. E. A., Hebert, P. D. N., Onciu, T. M. (2003) Phylogeography of Ponto-Caspian crustaceans: A benthic–planktonic comparison. Molecular Ecology 12, 985–996.

    CAS  Article  Google Scholar 

  8. 8.

    da Costa, K. G., Vallinoto, M., da Costa, R. M. (2011) Molecular identification of a new cryptic species of Acartia tonsa (copepoda, acartiidae) from the Northern coast of Brazil, based on mitochondrial COI gene sequences. J. Coastal Res. 64, 359–363.

    Google Scholar 

  9. 9.

    Daday, J. (1890) A magyarországi Diaptomus-fajok átnézete (Conspectus Diaptomorum Faunae Hungaricae). Természetrajzi Füzetek 13, 114–143.

    Google Scholar 

  10. 10.

    Dahms, H.-U. (1995) Dormancy in the copepoda–an overview. Hydrobiologia 306, 199–211.

    Article  Google Scholar 

  11. 11.

    Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 3, 294–297.

    CAS  PubMed  Google Scholar 

  12. 12.

    Forró, L. (1989) Composition and seasonal changes of the microcrustacean fauna of sodic waters near Fülöpháza (Kiskunság National Park, Hungary). Miscellanea Zool. Hung. 5, 33–41.

    Google Scholar 

  13. 13.

    Gaviria, S. (1998) Checklist and distribution of the free-living copepods (Arthropoda: Crustacea) from Austria. Ann. Naturhist. Museums Wien 100, 539–594.

    Google Scholar 

  14. 14.

    Goetze, E. (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc. Roy. Soc. London. Series B: Biol. Sci. 270(1531), 2321–2331.

    Article  Google Scholar 

  15. 15.

    Hairston, N. G. J. (1981) The interaction of salinity, predators, light and copepod color. Hydrobiologia 81, 151–158.

    Article  Google Scholar 

  16. 16.

    Hall, T. A. (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucl. Acids. Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  17. 17.

    Horváth, Z., Vad, C. F., Vörös, L., Boros, E. (2013) The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds. Freshwater Biol. 58, 430–440.

    Article  Google Scholar 

  18. 18.

    Kiefer, F. (1971) Revision der bacillifer-Gruppe der Gattung Arctodiaptomus Kiefer (Crustecea Copepoda: Calanoida). Memorie dell’ Istituto Italiano di Idrobiologia 27, 113–267.

    Google Scholar 

  19. 19.

    Lee, C. E. (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54, 2014–2027.

    CAS  Article  Google Scholar 

  20. 20.

    Librado, P., Rozas, J. (2009) Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    CAS  Article  Google Scholar 

  21. 21.

    Marrone. F., Lo Brutto, S., Hundsdoerfer, A. K., Arculeo, M. (2013) Overlooked cryptic endemism in copepods: Systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Mol. Phylogen. Evol. 66, 190–202.

    Article  Google Scholar 

  22. 22.

    Megyeri, J. (1959) Comparative hydrobiological investigations of the sodic waters of the Hungarian Plain. Acta Acad. Paedagog. Szegediensis 1959/II: 91–170 (In Hungarian).

    Google Scholar 

  23. 23.

    Monchenko, V. I. (2000) Cryptic species in Diacyclops bicuspidatus (Copepoda:Cyclopoida): Evidence from crossbreeding studies. Hydrobiologia 417, 101–107.

    Article  Google Scholar 

  24. 24.

    Nédli, J., De Meester, L., Major, Á., Schwenk, K., Szivák, I., Forró, L. (2014) Salinity and depth as structuring factors of cryptic divergence in Moina brachiata (Crustacea: Cladocera). Fund. Appl. Limnol. 184, 69–85.

    Article  Google Scholar 

  25. 25.

    Petrusek, A., Tollrian, R., Schwenk, K., Haas, A., Laforsch, C. (2009) A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. NAS 106, 2248–2252.

    CAS  Article  Google Scholar 

  26. 26.

    Pfenninger, M., Schwenk, K. (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121.

  27. 27.

    Ponyi, J. (1961) Az alföldi szikes vizek zoológiai kutatásának helyzete. (Zoologische Erforschung der Natrongewässer der grossen ungarischen Tiefebene). Állattani Közlemények 48, 117–124.

    Google Scholar 

  28. 28.

    Proctor, V. W., Malone, C. R., DeVlaming, V. L. (1967) Dispersal of aquatic organisms: Viability of disseminules recovered from the intestinal tract of captive killdeer. Ecology 48, 672–676.

    Article  Google Scholar 

  29. 29.

    R Development Core Team. (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing.

    Google Scholar 

  30. 30.

    Samchyshyna, L. (2008) Ecological characteristic of calanoids (Copepoda, Calanoida) of the inland waters of Ukraine. Vestnik Zool. 42, e–32–e–37.

    Google Scholar 

  31. 31.

    Samchyshyna, L., Santer, B. (2010) Chorion structure of diapause and subitaneous eggs of four diaptomid copepods (Calanoida, Diaptomidae): SEM observations. Vestnik Zool. e–26.

    Google Scholar 

  32. 32.

    Schneider, T., Herzig, A., Koinig, K. A., Sommaruga, R. (2012) Copepods in turbid shallow soda lakes accumulate unexpected high levels of carotenoids. PLoS ONE 7, e43063.

    CAS  Article  Google Scholar 

  33. 33.

    Schwenk, K., Sand, A., Boersma, M., Brehm, M., Mader, E., Offerhaus, D., Spaak, P. (1998) Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquatic Ecol. 32, 37–51.

    CAS  Article  Google Scholar 

  34. 34.

    Szabó, A., Korponai, K., Kerepesi, Cs., Somogyi, B., Vörös, L., Bartha, D., Márialigeti, K., Felföldi, T. (2017) Sodapans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649.

    Article  Google Scholar 

  35. 35.

    Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Templeton, A.R., Crandall, K. A., Sing, C. F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Iii. Cladogram estimation. Genetics 132, 619–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Vörös. L., Boros, E., Schmidt, A., V.-Balogh, K., Németh, B., Somogyi, B., Mózes, A. (2006) Physical and chemical environment of phytoplankton in soda pans having white coloured water. Hidrológiai Közlöny 86, 139–141.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to László Forró.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forró, L., Nédli, J., Csata, E. et al. Morphometric Characteristics and COI Haplotype Diversity of Arctodiaptomus Spinosus (Copedoda) Populations in Soda Pans in Hungary. BIOLOGIA FUTURA 68, 279–289 (2017). https://doi.org/10.1556/018.68.2017.3.5

Download citation

Keywords

  • Arctodiaptomus spinosus
  • morphology
  • COI haplotypes
  • sodic waters