Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 3, pp 279–289 | Cite as

Morphometric Characteristics and COI Haplotype Diversity of Arctodiaptomus Spinosus (Copedoda) Populations in Soda Pans in Hungary

  • László ForróEmail author
  • Judit Nédli
  • Enikő Csata
  • Virág Krízsik
  • Csilla Balogh
  • László G.-Tóth
Article

Abstract

Arctodiaptomus spinosus (Daday, 1891) is a characteristic species of the soda pan zooplankton in the Great Hungarian Plain. The biogeographical distribution of the species is interesting, since its range expands from the Pannonian Biogeographic region to the other side of the Carpathians, occurring in saline lakes in Eastern Anatolia, Armenia, Iran and in temporary waters in Ukraine. Our investigations focused on the morphometric characteristics and the COI haplotype diversity of four Hungarian populations in the Kiskunság area. We detected substantial morphological differences between the Böddi-szék population and the rest of the sampling sites, however considerable differences were not observable in the COI haplotypes in the populations. The 20 animals investigated for COI haplotypes belonged to the same haplotype network. Tajima’s D indicated departures from the neutral Wright–Fisher population model and suggested population expansion. The genetic composition of Arctodiaptomus spinosus populations in the Kiskunság area is rather uniform.

Keywords

Arctodiaptomus spinosus morphology COI haplotypes sodic waters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholmé, S., Samchyshyna, L., Santer, B., Lampert, W. (2005) Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnology and Oceanography 50, 923–929.CrossRefGoogle Scholar
  2. 2.
    Boros, E., Bánfi, S., Forró, L. (2006) Anostracans and microcrustaceans as potential food sources of waterbirds on sodic pans of the Hungarian plain. Hydrobiologia 567, 341–349.CrossRefGoogle Scholar
  3. 3.
    Boros, E., Forró, L., Gere, G., Kiss, O., Vörös, L., Andrikovics, S. (2008) The role of aquatic birds in the regulation of trophic relationships of continental soda pans in Hungary. Acta Zool. Acad. Sci. Hung. 54, 189–206.Google Scholar
  4. 4.
    Boros, E., V.-Balogh, K., Vörös, L., Horváth, Z. (2017) Multiple extreme environmental conditions of intermittent sodapans in the Carpathian Basin (Central Europe). Limnologica 62, 38–46.CrossRefGoogle Scholar
  5. 5.
    Clement, M., Posada, D., Crandall, K. A. (2000) Tcs: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1660.CrossRefGoogle Scholar
  6. 6.
    Conway, D. V. P., McFadzen, I. R. B., Tranter, P. R. G. (1994) Digestion of copepod eggs by larval turbof Scophthalmus maximus and egg viability following gut passage. Marine Ecol. Progr. Series 106, 303–309.CrossRefGoogle Scholar
  7. 7.
    Cristescu, M. E. A., Hebert, P. D. N., Onciu, T. M. (2003) Phylogeography of Ponto-Caspian crustaceans: A benthic–planktonic comparison. Molecular Ecology 12, 985–996.CrossRefGoogle Scholar
  8. 8.
    da Costa, K. G., Vallinoto, M., da Costa, R. M. (2011) Molecular identification of a new cryptic species of Acartia tonsa (copepoda, acartiidae) from the Northern coast of Brazil, based on mitochondrial COI gene sequences. J. Coastal Res. 64, 359–363.Google Scholar
  9. 9.
    Daday, J. (1890) A magyarországi Diaptomus-fajok átnézete (Conspectus Diaptomorum Faunae Hungaricae). Természetrajzi Füzetek 13, 114–143.Google Scholar
  10. 10.
    Dahms, H.-U. (1995) Dormancy in the copepoda–an overview. Hydrobiologia 306, 199–211.CrossRefGoogle Scholar
  11. 11.
    Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 3, 294–297.PubMedGoogle Scholar
  12. 12.
    Forró, L. (1989) Composition and seasonal changes of the microcrustacean fauna of sodic waters near Fülöpháza (Kiskunság National Park, Hungary). Miscellanea Zool. Hung. 5, 33–41.Google Scholar
  13. 13.
    Gaviria, S. (1998) Checklist and distribution of the free-living copepods (Arthropoda: Crustacea) from Austria. Ann. Naturhist. Museums Wien 100, 539–594.Google Scholar
  14. 14.
    Goetze, E. (2003) Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proc. Roy. Soc. London. Series B: Biol. Sci. 270(1531), 2321–2331.CrossRefGoogle Scholar
  15. 15.
    Hairston, N. G. J. (1981) The interaction of salinity, predators, light and copepod color. Hydrobiologia 81, 151–158.CrossRefGoogle Scholar
  16. 16.
    Hall, T. A. (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucl. Acids. Symp. Ser. 41, 95–98.Google Scholar
  17. 17.
    Horváth, Z., Vad, C. F., Vörös, L., Boros, E. (2013) The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds. Freshwater Biol. 58, 430–440.CrossRefGoogle Scholar
  18. 18.
    Kiefer, F. (1971) Revision der bacillifer-Gruppe der Gattung Arctodiaptomus Kiefer (Crustecea Copepoda: Calanoida). Memorie dell’ Istituto Italiano di Idrobiologia 27, 113–267.Google Scholar
  19. 19.
    Lee, C. E. (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution 54, 2014–2027.CrossRefGoogle Scholar
  20. 20.
    Librado, P., Rozas, J. (2009) Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  21. 21.
    Marrone. F., Lo Brutto, S., Hundsdoerfer, A. K., Arculeo, M. (2013) Overlooked cryptic endemism in copepods: Systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Mol. Phylogen. Evol. 66, 190–202.CrossRefGoogle Scholar
  22. 22.
    Megyeri, J. (1959) Comparative hydrobiological investigations of the sodic waters of the Hungarian Plain. Acta Acad. Paedagog. Szegediensis 1959/II: 91–170 (In Hungarian).Google Scholar
  23. 23.
    Monchenko, V. I. (2000) Cryptic species in Diacyclops bicuspidatus (Copepoda:Cyclopoida): Evidence from crossbreeding studies. Hydrobiologia 417, 101–107.CrossRefGoogle Scholar
  24. 24.
    Nédli, J., De Meester, L., Major, Á., Schwenk, K., Szivák, I., Forró, L. (2014) Salinity and depth as structuring factors of cryptic divergence in Moina brachiata (Crustacea: Cladocera). Fund. Appl. Limnol. 184, 69–85.CrossRefGoogle Scholar
  25. 25.
    Petrusek, A., Tollrian, R., Schwenk, K., Haas, A., Laforsch, C. (2009) A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. NAS 106, 2248–2252.CrossRefGoogle Scholar
  26. 26.
    Pfenninger, M., Schwenk, K. (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121.Google Scholar
  27. 27.
    Ponyi, J. (1961) Az alföldi szikes vizek zoológiai kutatásának helyzete. (Zoologische Erforschung der Natrongewässer der grossen ungarischen Tiefebene). Állattani Közlemények 48, 117–124.Google Scholar
  28. 28.
    Proctor, V. W., Malone, C. R., DeVlaming, V. L. (1967) Dispersal of aquatic organisms: Viability of disseminules recovered from the intestinal tract of captive killdeer. Ecology 48, 672–676.CrossRefGoogle Scholar
  29. 29.
    R Development Core Team. (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
  30. 30.
    Samchyshyna, L. (2008) Ecological characteristic of calanoids (Copepoda, Calanoida) of the inland waters of Ukraine. Vestnik Zool. 42, e–32–e–37.Google Scholar
  31. 31.
    Samchyshyna, L., Santer, B. (2010) Chorion structure of diapause and subitaneous eggs of four diaptomid copepods (Calanoida, Diaptomidae): SEM observations. Vestnik Zool. e–26.Google Scholar
  32. 32.
    Schneider, T., Herzig, A., Koinig, K. A., Sommaruga, R. (2012) Copepods in turbid shallow soda lakes accumulate unexpected high levels of carotenoids. PLoS ONE 7, e43063.CrossRefGoogle Scholar
  33. 33.
    Schwenk, K., Sand, A., Boersma, M., Brehm, M., Mader, E., Offerhaus, D., Spaak, P. (1998) Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquatic Ecol. 32, 37–51.CrossRefGoogle Scholar
  34. 34.
    Szabó, A., Korponai, K., Kerepesi, Cs., Somogyi, B., Vörös, L., Bartha, D., Márialigeti, K., Felföldi, T. (2017) Sodapans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649.CrossRefGoogle Scholar
  35. 35.
    Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Templeton, A.R., Crandall, K. A., Sing, C. F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Iii. Cladogram estimation. Genetics 132, 619–633.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Vörös. L., Boros, E., Schmidt, A., V.-Balogh, K., Németh, B., Somogyi, B., Mózes, A. (2006) Physical and chemical environment of phytoplankton in soda pans having white coloured water. Hidrológiai Közlöny 86, 139–141.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • László Forró
    • 1
    Email author
  • Judit Nédli
    • 2
  • Enikő Csata
    • 3
  • Virág Krízsik
    • 4
  • Csilla Balogh
    • 2
  • László G.-Tóth
    • 2
    • 5
  1. 1.Department of ZoologyHungarian Natural History MuseumBudapestHungary
  2. 2.Department of Hydrozoology, MTA Centre for Ecological ResearchBalaton Limnological InstituteTihanyHungary
  3. 3.Hungarian Department of Biology and EcologyBabes-Bolyai UniversityCluj-NapocaRomania
  4. 4.Laboratory of Molecular TaxonomyHungarian Natural History MuseumBudapestHungary
  5. 5.Institute of Regional Economics and Rural Development, Faculty of Economics and Social SciencesSzent István UniversityGödöllőHungary

Personalised recommendations