Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 2, pp 220–231 | Cite as

Linalool-Induced Oxidative Stress Processes in the Human Pathogen Candida Albicans

  • Gábor MátéEmail author
  • Dominika Kovács
  • Zoltán Gazdag
  • Miklós Pesti
  • Árpád Szántó
Article

Abstract

The present study investigated the linalool (Lol)-induced effects in acute toxicity tests in the human pathogen Candida albicans (C. albicans). Lol treatments induced reduced germ tube formation of the pathogen, which plays a crucial role in the virulence. In comparison with the untreated control, the exposure of 107 cells ml–1 to 0.7 mM or 1.4 mM Lol for one hour induced 20% and 30% decrements, respectively, in the colony-forming ability. At the same time, these treatments caused dose-dependent decrease in the levels of superoxide anion radical and total reactive oxygen species, while there was 1.5 and 1.8- fold increases in the concentrations of peroxides and lipid peroxides, respectively, indicating oxidative stress induction in the presence of Lol. Lol treatments resulted in different adaptive modifications of the antioxidant system. In 0.7 mM-treated cells, decreased specific activities of superoxide dismutase and catalase were detected, while exposure to 1.4 mM Lol resulted in the up-regulation of catalase, glutathione reductase and glutathione peroxidases.

Keywords

Antioxidant enzyme Candida albicans linalool reactive oxygen species oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, M. E. (1985) Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol. 113, 548–555.CrossRefGoogle Scholar
  2. 2.
    Ao, Y., Satoh, K., Shibano, K., Kawahito, Y., Shioda, S. (2008) Singlet oxygen scavenging activity and cytotoxicity of essential oils o. Rutaceae. J. Clin. Biochem. Nutr. 43, 6–12.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bakkali, F., Averbeck, S., Idaomar, M. (2008) Biological effects of essential oils–A review. Food Chem. Toxicol. 46, 446–475.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bickers, D., Calowb, P., Greimc, H., Hanifind, J. M. et al. (2003) A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem. Toxicol. 41, 919–942.PubMedGoogle Scholar
  5. 5.
    Blaskó, Á., Gazdag, Z., Gróf, P., Máté, G. et al. (2017) Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane o. Candida albicans: an in vivo EPR study. Apoptosis 22, 175–187.PubMedGoogle Scholar
  6. 6.
    Carmel-Harel, O., Storz, G. (2000) Roles of the glutathione- and thioredoxin-dependent reduction system in th. Escherichia coli an. Saccharomyces cerevisiae responses to oxidative stress. Ann. Rev. Microbiol. 54, 439–461.Google Scholar
  7. 7.
    Casao, A., Cebrián, I., Asumpção, M. E., Pérez-Pé, R. et al. (2010) Seasonal variations of melatonin in ram seminalplasma are correlated to those of testosterone and antioxidant enzymes. Reprod. Biol. Endocrin. 59, 1–9.Google Scholar
  8. 8.
    Celik, S., Özkaya, A. (2002) Effects of intraperitoneally administered lipoic acid, vitamin E, and linalool on the level of total lipid and fatty acids in guinea pig brain with oxidative stress induced by H2O2. J. Biochem. Mol. Biol. 35, 547–552.PubMedGoogle Scholar
  9. 9.
    Chiu, D. T. Y., Stults, F. H., Tappel, A. L. (1976) Purification and properties of rat lung soluble glutathione peroxidase. Biochim. Biophys. Acta 445, 558–566.Google Scholar
  10. 10.
    Cho, S. Y., Jun, H. J., Lee, J. H., Lee, J. H. et al. (2011) Linalool reduces the expression of 3-hydroxy- 3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitindependent mechanisms. FEBS Lett. 585, 3289–3296.PubMedGoogle Scholar
  11. 11.
    Emri, T., Bartók, G., Szentirmai, A. (1994) Regulation of specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase i. Penicillium chrysogenum. FEMS Microbiol. Lett. 117, 67–70.Google Scholar
  12. 12.
    Erdogan, A., Ozkan, A. (2013) A comparative study of cytotoxic, membrane and DNA damaging effects o. Origanum majorana’s essential oil and its oxygenated monoterpene component linalool on parental and epirubicin-resistant H1299 cells. Biologia 68, 754–761.Google Scholar
  13. 13.
    Ferguson, L. R., von Borstel, R. C. (1992) Induction of the cytoplasmatic ‘petite’ mutation by chemical and physical agents i. Saccharomyces cerevisiae. Mutat. Res. 265, 103–148.PubMedGoogle Scholar
  14. 14.
    Fisher, K., Phillips, C. A. (2006) The effects of lemon, orange and bergamot essential oils and their components on the survival o. Campylobacter jejuni. Escherichia coli O157. Listeria monocytogenes. Bacillus cereus an. Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 101, 1232–1240.PubMedGoogle Scholar
  15. 15.
    Gazdag, Z., Fujs, S., Kőszegi, B., Kálmán, N. et al. (2011) The abc1-/coq8- respiratory-deficient mutant o. Schizosaccharomyces pombe suffers from glutathione underproduction and hyperaccumulates Cd2+. Folia Microbiol. 56, 353–359.Google Scholar
  16. 16.
    Gazdag, Z., Máté, G., Čertik, M., Türmer, K. et al. (2014). Tert-Butyl hydroperoxide-induced differing plasma membrane and oxidative stress processes in yeast strains BY4741 an. erg5Δ. J. Basic Microbiol. 54, 50–62.Google Scholar
  17. 17.
    Gille, G., Sigler, K. (1995) Oxidative stress and living cells. Folia Microbiol. 40, 131–152.Google Scholar
  18. 18.
    Gónzalez-Párraga, P., Alonso-Monge, R., Plá, J., Argüelles, J. C. (2010) Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities i. Candida albicans are independent of the Hog1 and Cap1-mediated pathways. FEMS Yeast Res. 10, 747–756.PubMedGoogle Scholar
  19. 19.
    Gu, Y., Ting, Z., Qiu, X., Zhang, X. et al. (2010) Linalool preferentially induces robust apoptosis of variety of leukaemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicol. 268, 19–24.Google Scholar
  20. 20.
    Halliwell, B., Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine. Oxford University Press, New York.Google Scholar
  21. 21.
    Jones, C. M., Lawrence, A., Wardman, P., Burkitt, M. J. (2003) Kinetics of superoxide scavenging by glutathione: an evaluation of its role in the removal of mitochondrial superoxide. Biochem. Soc. T. 31, 1337–1339.Google Scholar
  22. 22.
    Khan, A., Ahmad, A., Akhtar, F., Yousuf, S. et al. (2010). Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Microbiol. 161, 816–823.Google Scholar
  23. 23.
    Kim, D., Shin, W. S., Lee, K. H., Kim, K. et al. (2002) Rapid differentiation o. Candida albicans from othe. Candida species using its unique germ tube formation at 39 °C. Yeast 19, 957–962.PubMedGoogle Scholar
  24. 24.
    Kladniew, B. R., Polo, M., Villegas, S. M., Galle, M. et al. (2014) Synergistic antiproliferative and anticholesterogenic effects of linalool, 1,8-cineole, and simvastatin on human cell lines. Chem-Biol. Interact. 214, 57–68.Google Scholar
  25. 25.
    Lee, J., Dawes, I. W., Roe, J. H. (1995) Adaptive response o. Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiol. 141, 3127–3132.Google Scholar
  26. 26.
    Letizia, C. S., Cocchiara, J., Lalko, J., Api, A. M. (2003) Fragrance material review on linalool. Food Chem. Toxicol. 41, 943–964.PubMedGoogle Scholar
  27. 27.
    Martin, H. L., Teismann, P. (2009) Glutathione–a review on its role and significance in Parkinson’s disease. FASEB J. 23, 3263–3272.PubMedGoogle Scholar
  28. 28.
    Mayer, F. L., Wilson, D., Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence 4, 119–128.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Máté, G., Gazdag, Z., Mike, N., Papp, G. et al. (2014) Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeas. Schizosaccharomyces pombe. Toxicon 90, 155–166.PubMedGoogle Scholar
  30. 30.
    Mirata, M. A., Wüst, M., Mosandl, A., Schrader, J. (2008) Fungal biotransformation of (±)-linalool. J. Agric. Food Chem. 56, 3287–3296.PubMedGoogle Scholar
  31. 31.
    Mitić-Ćulafić, D., Žegura, B., Nikolić, B., Vuković-Gaćić, B. et al. (2009) Protective effect of linalool, myrcene and eucalyptol agains. t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem. Toxicol. 47, 260–266.PubMedGoogle Scholar
  32. 32.
    Oberley, L. W., Spitz, D. R. (1984) Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105, 457–464.Google Scholar
  33. 33.
    Pesti, M., Horváth, L., Vígh, L., Farkas, T. (1985) Lipid content and ESR determination of plasma membrane order parameter i. Candida albicans sterol mutants. Acta Microbiol. Hung. 32, 305–313.Google Scholar
  34. 34.
    Peterson, G. L. (1983) Determination of total protein. Methods Enzymol. 91, 86–105.Google Scholar
  35. 35.
    Pinto, M. C., Mata, A. M., Lopez-Barea, I. (1984) Reversible inactivation o. Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys. 228, 1–12.Google Scholar
  36. 36.
    Pócsi, I., Prade, R. A., Penninckx, M. J. (2004) Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49, 1–76.Google Scholar
  37. 37.
    Rahman, K. (2007) Studies on free radicals, antioxidants, and co-factors. Clin. Inertv. Aging 2, 219–236.Google Scholar
  38. 38.
    Roggenkamp, R., Sahm, H., Wagner, F. (1974) Microbial assimilation of methanol induction and function of catalase i. Candida boidinii. FEBS Lett. 41, 283–286.Google Scholar
  39. 39.
    Royall, J. A., Ischiropoulos, H. (1993) Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochim. Biophys. 302, 348–355.Google Scholar
  40. 40.
    Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M. et al. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 62, 10–24.PubMedGoogle Scholar
  41. 41.
    Simić, A., Manoljović, D., Šegan, D., Todorić, M. (2007) Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules 12, 2327–2340.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Stanojević, J., Knežević-Vukčević, J., Miloshev, G. (2004) Inhibition of oxidative DNA damage by plant antioxidants. Arch. Biol. Sci. Belgrade 56, 17–18.Google Scholar
  43. 43.
    Usta, J., Kreydiyyeh, S., Knio, K., Barnabe, P. et al. (2009) Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels. Chem-Biol. Interact. 180, 39–46.PubMedGoogle Scholar
  44. 44.
    Warholm, M., Guthenberg, C., von Bahr, C., Mannervik, B. (1985) Glutathione transferases from human liver. Methods Enzymol. 113, 499–504.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Zengin, H., Baysal, A. H. (2014) Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19, 17773–17798.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zore, G. B., Thakre, A. D., Rathod, V., Karuppayil, S. M. (2011) Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates o. Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 54, 99–109.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gábor Máté
    • 1
    Email author
  • Dominika Kovács
    • 1
  • Zoltán Gazdag
    • 1
  • Miklós Pesti
    • 1
  • Árpád Szántó
    • 2
  1. 1.Department of General and Environmental Microbiology, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Department of Urology, Medical SchoolUniversity of PécsPécsHungary

Personalised recommendations