Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 2, pp 150–161 | Cite as

Evaluation of Antiproliferative and Hepatoprotective Effects of Wheat Grass (Triticum Aestivum)

  • Anand Rajoria
  • Archana Mehta
  • Pradeep Mehta
  • Laxmi Ahirwal
  • Shruti ShuklaEmail author
  • Vivek K. BajpaiEmail author
Article

Abstract

This study was aimed to evaluate the pharmacological potential of various extracts (hexane, chloroform, methanol and aqueous) of dried shoots of Triticum aestivum (wheat grass) in terms of antiproliferative and hepatoprotective potential of T. aestivum. The total chlorophyll content in dried shoots of T. aestivum was 0.54 ± 0.016 g/L (chlorophyll-a: 0.288 ± 0.05 g/L; and chlorophyll-b; 0.305 ± 0.05 g/L), while total carotene content was 0.42 ± 0.066 g/L. In addition, the chloroform extract of dried shoots of T. aestivum (250 µg/mL) exhibited 87.23% inhibitory effect with potent cytotoxicity against human hepatocellular carcinoma (HepG2) cancer cell line. Moreover, chloroform and methanol extracts significantly reduced the levels of SGOT, and SGPT enzymes, as well as total bilirubin content, while raised the level of total protein in a concentration-gradient manner, confirming the potent hepatoprotective effect of T. aestivum. A possible mechanism of apoptosis of the chloroform extract of dried shoots of T. aestivum in terms of its potent antiproliferative activity against HepG2 cancer cell line can also be proposed in this study. Our findings clearly demonstrate that T. aestivum has a significant pharmacological potential that night be used for antiproliferative and hepatoprotective purposes.

Keywords

T. aestivum (wheat grass) antiproliferative hepatoprotective apoptosis mechanism pharmacological significance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J. V., Slaght, K. S., Boogaard, M. A. (2004) An automated approach to lithcfield and Wilcoxon’s evaluation of dose-effect experiments using the R package LW1949. Environ. Toxicol. Chem. 35, 3058–3061.CrossRefGoogle Scholar
  2. 2.
    Adewusi, E. A., Afolayan, A. J. (2010) A review of natural products with hepatoprotective activity. J. Med. Plant Res. 4, 1318–1334.Google Scholar
  3. 3.
    Aneta, W., Jan, O. S., Renata, C. (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105, 940–949.CrossRefGoogle Scholar
  4. 4.
    Cervantes-Paz, B., Yahia, E. M., Ornelas-Paz, J. J., Victoria-Campos, C. I., Ibarra-Junquera, V, Perez-Martinez, J. D., Escalante-Minakata, P. (2014) Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chem. 146, 188–196.CrossRefGoogle Scholar
  5. 5.
    Chudapongse, N., Kamkhunthod, M., Poompachee, K. (2010) Effects o. Phyllanthus urinaria extract on HepG2 cell viability and oxidative phosphorylation by isolated rat liver mitochondria. J. Ethnopharmacol. 130, 315–319.CrossRefGoogle Scholar
  6. 6.
    Egner, P. A., Munoz, A., Kensler, T. W. (2003) Chemoprevention with chlorophyll in individuals exposed to dietary aflatoxin. Mut. Res. 524, 209–216.CrossRefGoogle Scholar
  7. 7.
    Elliott, R. (2005) Mechanisms of genomic and non-genomic actions of carotenoids. Biochim. Biophys. Acta 1740, 147–154.CrossRefGoogle Scholar
  8. 8.
    Ferruzzi, M. G., Blakeslee, J. (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutri. Res. 27, 1–12.CrossRefGoogle Scholar
  9. 9.
    Jayaraman, J. (2011) Estimation of Chlorophyll and Carotenoids. In Laboratory Manual in Biochemistry. New Age. Int. 1, 141–142.Google Scholar
  10. 10.
    Lee, R. H., Cho, J. H., Jeon, Y. J., Bang, W., Cho, J. J., Choi, N. J., Seo, K. S., Shim, J. H., Chae, J. I. (2015) Quercetin induces antiproliferative activity against human hepatocellular carcinoma (HepG2) cells by suppressing specificity protein 1 (Sp1). Drug Dev. Res. doi:10.1002/ddr.21235.Google Scholar
  11. 11.
    Maekawa, L., Lamping, R., Marcacci, M., Maekawa, M., Nassri, M., Koga, I. C. (2007) Antimicrobial activity of chlorophyll based solutions o. Candida albicans an. E. faecalis. RSBO 4, 36–40.Google Scholar
  12. 12.
    Malick, C. P., Singh, M. B. (1980) Plant Enzymology and Histoenzymology. Kalyani Publishers, New Delhi.Google Scholar
  13. 13.
    Rana, S. V., Pal, R., Vaiphei, K., Ola, R. P., Singh, K. (2010) Hepatoprotection by carotenoids in isoniazid-rifampicin induced hepatic injury in rats. Biochem. Cell Biol. 88, 819–834.CrossRefGoogle Scholar
  14. 14.
    Reddy, V. R., Bikshapathi, G., Reddy, K. M. (2014) Hepatoprotective activity of extract o. Erythroxylum monogynum in albino rats. Int. J. Pure Appl. Biosci. 2, 58–62.Google Scholar
  15. 15.
    Sarkar, D., Sharma, A., Talukder, G. (1994) Chlorophyll and chlorophyllin as modifiers of genotoxic effects. Mut. Res. 318, 239–247.CrossRefGoogle Scholar
  16. 16.
    Shenoy, K. A., Soumyaji, S. N., Bairy, K. L. (2001) Hepatoprotective effect o. Ginkgo Biloba in carbon tetrachloride induced hepatic injury in rats. Indian J. Pharmacol. 33, 260–264.Google Scholar
  17. 17.
    Singh, S., Mehta, A., Mehta, P. (2011) Hepatoprotective activity o. Cajanus cajan against carbon tetrachloride induced liver damage. Int. J. Pharm. Sci. 3, 146–147.Google Scholar
  18. 18.
    Singh, N., Verma, P., Pandey, B. R. (2012) Therapeutic potential of organi. Triticum aestivum Linn. (wheat grass) in prevention and treatment of chronic diseases: An overview. Int. J. Pharm. Sci. Drug Res. 4, 10–14.Google Scholar
  19. 19.
    Tang, Z. Y., Ye, S. L., Liu, Y. K., Qin, L. X., Sun, H. C., Ye, Q. H., Wang, L., Zhou, J., Qiu, S. J., Li, Y. (2004) A decade’s studies on metastasis of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 130, 187–196.CrossRefGoogle Scholar
  20. 20.
    Yin, Q. H., Yan, F. X., Zu, X. Y., Wu, Y. H., Wu, X. P., Liao, M. C., Deng, S. W., Yin, L. I., Zhuang, Y. Z. (2012) Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64, 43–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Laboratory of Plant Pathology and Microbiology, Department of BotanyDr. Hari Singh Gour UniversitySagarIndia
  2. 2.Department of Energy and Materials EngineeringDongguk UniversitySeoulRepublic of Korea
  3. 3.Department of Applied Microbiology and Biotechnology, School of BiotechnologyYeungnam UniversityGyeongsan, GyeongbukRepublic of Korea

Personalised recommendations