Acta Biologica Hungarica

, Volume 68, Issue 2, pp 232–236 | Cite as

Phytochemical Investigation of Rumex Thyrsiflorus Fingerh.

  • Orsolya Orbán-Gyapai
  • Peter Forgo
  • Judit Hohmann
  • Andrea VasasEmail author
Short Communication


In the course of our pharmacological screening of Polygonaceae species occurring in the Carpathian Basin the extracts prepared from the roots of Rumex thyrsiflorus showed promising antiproliferative, xanthine oxidase inhibitory and antibacterial activities. The present work deals with the isolation of compounds from the root of the plant. After multistep separation process, four compounds were obtained from the n-hexane, chloroform and ethyl acetate soluble fractions of the methanol extract of the root. The structures of the isolated compounds were determined as 1-palmitoylglycerol, β-sitosterol, (–)-epicatechin, and procyanidin B5.


Rumex thyrsiflorus Polygonaceae phenolic compounds procyanidin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, D. E., Hatfield, G. (2004). Medicinal plants in folk tradition–An ethnobotany of Britain and Ireland. Timber Press, Portland, Cambridge.Google Scholar
  2. 2.
    Cui, C. B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T., Park, J. H. (1992) Constituents of a fern. Davallia mariesii Moore. II. Identification and 1H- and 13C-Nuclear Magnetic Resonance spectra of procyanidin B-5, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and epicatechin-(4β→6)- epicatechin- epicatechin-(4β→8)-(4β→6)-epicatechin. Chem. Pharm. Bull. 40, 889–898.CrossRefGoogle Scholar
  3. 3.
    Csupor-Löffler, B., Hajdú, Z., Zupkó, I., Molnár, J., Forgo, P., Vasas, A., Kele, Z., Hohmann, J. (2011) Antiproliferative constituents of the roots o. Conyza canadensis. Planta Med. 77, 1183–1188.CrossRefGoogle Scholar
  4. 4.
    Dénes, A., Papp, N., Babai, D., Czúcz, B., Molnár, Z. (2013) Edible wild plants and their use based on ethnographic and ethnobotanical researches among Hungarian in the Carpathian Basin. Dunántúli Dolgozatok (A) Természettudományi Soroza. 13, 35–76.Google Scholar
  5. 5.
    Getie, M., Gebre-Mariam, T., Rietz, R., Höhne, C., Huschka, C., Schmidtke, M., Abate, A., Neubert, R. H. H. (2003) Evaluation of the antimicrobial and anti-inflammatory activities of the medicinal plant. Dodonaea viscosa. Rumex nervosus an. Rumex abyssinicus. Fitoterapia 74, 139–143.CrossRefGoogle Scholar
  6. 6.
    Hirao, S., Tara, K., Kuwano, K., Tanaka, J., Ishibashi, F. (2012) Algicidal activity of glycerolipids from brown alg. Ishige sinicola toward red tide microalgae. Biosci. Biotechnol. Biochem. 76, 372–374.CrossRefGoogle Scholar
  7. 7.
    Lajter, I., Zupkó, I., Molnár, J., Jakab, G., Balogh, L., Vasas, A., Hohmann, J. (2013) Antiproliferative activity of Polygonaceae species from the Carpathian Basin against human cancer cell lines. Phytother. Res. 27, 77–85.CrossRefGoogle Scholar
  8. 8.
    Litvinenko, Y. A., Muzychkina, R. A. (2003) Phytochemical investigation of biologically active substances in certain Kazakhsta. Rumex species. 1. Chem. Nat. Comp. 39, 446–449.CrossRefGoogle Scholar
  9. 9.
    Martins, A., Vasas, A., Schelz, Z., Viveiros, M., Molnár, J., Hohmann, J., Amaral, L. (2010) Constituents o. Carpobrotus edulis inhibit P-glycoprotein o. MDR1-transfected mouse lymphoma cells. Anticancer Res. 30, 829–836.PubMedGoogle Scholar
  10. 10.
    Martins, A., Vasas, A., Viveiros, M., Molnár, J., Hohmann, J., Amaral, L. (2011) Antibacterial properties of compounds isolated fro. Carpobrotus edulis. Int. J. Antimicrob. Ag. 37, 438–444.CrossRefGoogle Scholar
  11. 11.
    Ododo, M. M., Choudhury, M. K., Dekebo, A. H. (2016) Structure elucidation of β-sitosterol with antibacterial activity from the root bark o. Malva parviflora. SpringerPlus 5, 1–11.CrossRefGoogle Scholar
  12. 12.
    Orbán-Gyapai, O., Lajter, I., Hohmann, J., Jakab, G., Vasas, A. (2015) Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species. Phytother. Res. 29, 459–465.CrossRefGoogle Scholar
  13. 13.
    Orbán-Gyapai, O., Liktor-Busa, E., Kúsz, N., Stefkó, D., Urbán, E., Hohmann, J., Vasas, A. (2017) Antibacterial screening o. Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds fro. Rumex aquaticus. Fitoterapia 118, 103–106.CrossRefGoogle Scholar
  14. 14.
    Özyürek, M., Bektaşoğlu, B., Güçlü, K., Apak, R. (2009) Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method. Anal. Chim. Acta 636, 42–50.CrossRefGoogle Scholar
  15. 15.
    Pardo-de-Santayana, M., Tardío, J., Morales, R. (2005) The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). Int. J. Food Sci. Nutr. 56, 529–542.CrossRefGoogle Scholar
  16. 16.
    Shahat, A. A. (2006) Procyanidins fro. Adansonia digitata. Pharm. Biol. 44, 445–450.CrossRefGoogle Scholar
  17. 17.
    Vasas, A., Orbán-Gyapai, O., Hohmann, J. (2015) The genu. Rumex: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 175, 198–228.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Orsolya Orbán-Gyapai
    • 1
  • Peter Forgo
    • 1
  • Judit Hohmann
    • 1
    • 2
  • Andrea Vasas
    • 1
    Email author
  1. 1.Department of PharmacognosyUniversity of SzegedSzegedHungary
  2. 2.Interdisciplinary Centre of Natural ProductsUniversity of SzegedSzegedHungary

Personalised recommendations