Acta Biologica Hungarica

, Volume 68, Issue 1, pp 50–59 | Cite as

The Chemical Inducer, BTH (Benzothiadiazole) and Root Colonization by Mycorrhizal Fungi (Glomus spp.) Trigger Resistance Against White Rot (Sclerotinia sclerotiorum) in Sunflower

  • Rita BánEmail author
  • Gellért Baglyas
  • Ferenc Virányi
  • Balázs Barna
  • Katalin Posta
  • József Kiss
  • Katalin Körösi


White rot caused by Sclerotinia sclerotiorum (SS) is one of the most devastating plant diseases of sunflower. Controlling this pathogen by available tools hardly result in acceptable control. The aim of this study was to elucidate the effects of plant resistance inducers, BTH (benzothiadiazole in Bion 50 WG) and arbuscular mycorrhizal fungi (AMF) on disease development of white rot in three sunflower genotypes. Defence responses were characterized by measuring the disease severity and identifying cellular/ histological reactions (e.g. autofluorescence) of host plants upon infection. Depending on the host genotype, a single application of inducers reduced disease symptoms. Histological examination of host responses revealed that BTH and/or AMF pre-treatments significantly impeded the development of pathogenic hyphae in Iregi szürke csíkos and P63LE13 sunflower plants and it was associated with intensive autofluorescence of cells. Both localized and systemic induction of resistance was observed. Importantly, the frequency of mycorrhization of hybrid P63LE13 and PR64H41 was significantly increased upon BTH treatment, so it had a positive effect on the formation of plant-mycorrhiza interactions in sunflower. To our knowledge, this is the first report on the additive effect of BTH on mycorrhization and the positive effect of these inducers against SS in sunflower.


Arbuscular mycorrhizal fungi Bion 50 WG induced resistance SAR Sclerotinia rot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aysan, E., Demir, S. (2009) Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum Biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de Bary in the common bean (Phaseolus vulgaris L.). Plant Pathol. J. 8, 74–78.CrossRefGoogle Scholar
  2. 2.
    Azcón-Aguilar, C., Barea, J. M. (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6, 457–464.CrossRefGoogle Scholar
  3. 3.
    Bán, R., Virányi, F., Komjáti, H. (2004) Benzothiadiazole-induced resistance to Plasmopara halstedii (Farl.) Berl. et de Toni in sunflower. In: Spencer-Phillips, P. T. N. (ed.) Advances in downy mildew research. Kluwer Academic Publishers, Dordrecht, pp. 265–273.CrossRefGoogle Scholar
  4. 4.
    Barilli, E., Prats, E., Rubiales, D. (2010) Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. Eur. J. Plant Pathol. 128, 483–493.CrossRefGoogle Scholar
  5. 5.
    Buzi, A., Chilosi, G., De Sillo, D., Magro, P. (2004) Induction of resistance in melon to Didymella bryoniae and Sclerotinia sclerotiorum by seed treatments with acibenzolar-S-methyl and methyl jasmonate but not with salicylic acid. J. Phytopath. 152, 34–42.CrossRefGoogle Scholar
  6. 6.
    Chandrashekara, C. P., Patil, V. C., Sreenivasa, M. N. (1995) Response of two sunflower (Helianthus annuus L.) genotypes to VA-mycorrhizal inoculation and phosphorus levels. Biotropia 8, 53–59.Google Scholar
  7. 7.
    Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., Gianinazzi-Pearson, V. (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Int. 11, 1017–1028.CrossRefGoogle Scholar
  8. 8.
    Dann, E., Diers, B., Byrum, J., Hammerschmidt, R. (1998) Effect of treating soybean with 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH) on seed yields and the level of disease caused by Sclerotinia sclerotiorum in field and greenhouse studies. Eur. J. Plant Pathol. 104, 271–278.CrossRefGoogle Scholar
  9. 9.
    Ezzat, A. S., Ghoneem, K. M., Saber, W. I. A., Al-Askar, A. A. (2015) Control of wilt, stalk and tuber rots diseases using arbuscular mycorrhizal fungi, Trichoderma species and hydroquinone enhances yield quality and storability of Jerusalem artichoke (Helianthus tuberosus L.). Egypt. Journ. Biol. Pest Cont. 25, 11–22.Google Scholar
  10. 10.
    Faessel, L., Nassr, N., Lebeau, T., Walter, B. (2010) Chemically-induced resistance on soybean inhibits nodulation and mycorrhization. Plant Soil 329, 259–268.CrossRefGoogle Scholar
  11. 11.
    Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., Ryals, J. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell 8, 629–643.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Harrach, B. D., Baltruschat, H., Barna, B., Fodor, J., Kogel, K.-H. (2013) The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol. Plant-Microbe Int. 26, 599–605.CrossRefGoogle Scholar
  13. 13.
    Koornneef, A., Pieterse, C. M. J. (2008) Cross talk in defense signaling. Plant Physiol. 146, 839–844.CrossRefGoogle Scholar
  14. 14.
    Körösi, K., Bán, R., Barna, B., Virányi, F. (2011) Biochemical and molecular changes in downy mildew-infected sunflower triggered by resistance inducers. J. Phytopath. 159, 471–478.CrossRefGoogle Scholar
  15. 15.
    Mur, A. J., Kenton, P., Atzorn, R., Miersch, O., Wasternack, C. (2006) The outcomes of concentrationspecific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140, 249–262.CrossRefGoogle Scholar
  16. 16.
    MYCOCALC software package (2001) Retrieved from
  17. 17.
    Oostendorp, M., Kunz, W., Dietrich, B., Staub, T. (2001) Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107, 19–28.CrossRefGoogle Scholar
  18. 18.
    Özgönen, H., Bicici, M., Erkilic, A. (2001) The effect of salicyclic acid and endomycorrhizal fungus Glomus etunicatum on plant development of tomatoes and fusarium wilt caused by Fusarium oxysporum f. sp lycopersici. Turk. J. Agric. For. 25, 25–29.Google Scholar
  19. 19.
    Pozo, M. J., Azcon-Aguilar, C. (2007) Unraveling mycorrhiza-induced resistance. Cur. Op. in Plant Biol. 10, 393–398.CrossRefGoogle Scholar
  20. 20.
    Prats, E., Rubiales, D., Jorrin, J. (2002) Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol. Mol. Plant Pathol. 60, 155–162.CrossRefGoogle Scholar
  21. 21.
    Rodríguez, M. A., Venedikian, N., Bazzalo, M. E., Godeas, A. (2004) Histopathology of Sclerotinia sclerotiorum attack on flower parts of Helianthus annuus heads in tolerant and susceptible varieties. Mycopathologia 157, 291–302.CrossRefGoogle Scholar
  22. 22.
    Ryals, J., Uknes, S., Ward, E. (1994) Systemic acquired resistance. Plant Physiol. 104, 1109–1112.CrossRefGoogle Scholar
  23. 23.
    Saharan, G. S., Mehta, N. (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science+Business Media B.V.CrossRefGoogle Scholar
  24. 24.
    Tosi, L., Luigetti, L., Zazzerini, A. (1999) Benzothiadiazole induces resistance to Plasmopara helianthi in sunflower plants. J. Phytopath. 147, 365–370.CrossRefGoogle Scholar
  25. 25.
    Tosi, L., Zazzerini, A. (2000) Interactions between Plasmopara helianthi, Glomus mosseae and two plant activators in sunflower plants. Eur. J. Plant Pathol. 106, 735–744.CrossRefGoogle Scholar
  26. 26.
    Trouvelot, A., Kough, J. L., Gianinazzi-Pearson, V. (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson, V., Gianinazzi, S. (eds) Physiological and Genetical Aspects of Mycorrhizae. Paris. INRA Press, pp. 217–221.Google Scholar
  27. 27.
    Vierheilig, H., Steinkellner, S., Khaosaad, T., Garcia-Garrido, J. M. (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: One mechanism, two effects? In: Varma, A. (ed.) Mycorrhiza. Berlin Heidelberg, Springer-Verlag, pp. 307–320.CrossRefGoogle Scholar
  28. 28.
    Walters, D. R., Ratsep, J., Havis, N. D. (2013) Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64, 1263–1280.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Rita Bán
    • 1
    Email author
  • Gellért Baglyas
    • 1
  • Ferenc Virányi
    • 1
  • Balázs Barna
    • 2
  • Katalin Posta
    • 3
  • József Kiss
    • 1
  • Katalin Körösi
    • 1
  1. 1.Plant Protection InstituteSzent István UniversityGödölloHungary
  2. 2.Plant Protection Institute, Research Centre for AgricultureHungarian Academy of SciencesBudapestHungary
  3. 3.Institute of Genetics and BiotechnologySzent István UniversityGödölloHungary

Personalised recommendations