Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 1, pp 35–49 | Cite as

Examination of the Effect of Sodium Nitrite on Gap Junction Function During Ischaemia and Reperfusion in Anaesthetized Dogs

  • Gottfried Miskolczi
  • Márton Gönczi
  • Mária Kovács
  • Ágnes VéghEmail author
Article
  • 1 Downloads

Abstract

It has previously been proved that sodium nitrite, infused prior to coronary artery occlusion or before reperfusion, results in marked antiarrhythmic effect in anaesthetized dogs. We have now examined whether this protection involves the modulation of gap junction (GJ) function by nitric oxide (NO), derived from nitrite administration under ischaemic conditions. Two groups of chloralose and urethane anaesthetized dogs, each containing 13 animals, were subjected to a 25 min period occlusion of the left anterior descending (LAD) coronary artery, followed by reperfusion. One group was infused with sodium nitrite (0.2 μmol/kg/min, i.v.), the other group with saline 10 min prior to reperfusion. The severities of arrhythmias and of ischaemia (epicardial ST-segment, total activation time), parallel with changes in myocardial tissue impedance, a measure of electrical coupling of gap junctions, were assessed during the experiments. Compared to the controls, nitrite infusion administered prior to reperfusion significantly attenuated the severity of ischaemia, the ischaemia-induced impedance changes and, consequently, the severity of arrhythmias, occurring during the 1B phase of the occlusion, and increase survival following reperfusion (0% vs. 85%). It is concluded that the marked antiarrhythmic effect of sodium nitrite is partly due, to the preservation of the electrical coupling of GJs by NO.

Keywords

Arrhythmia sodium nitrite gap junction ischaemia/reperfusion myocardial tissue impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L., Szigeti, Z., Parratt, J. R., Végh, Á. (2002) Delayed cardioprotective effects of exercise in dogs are aminoguanidine sensitive: possible involvement of nitric oxide. Clin. Sci. 102, 435–445.CrossRefGoogle Scholar
  2. 2.
    Beardslee, M. A., Lerner, D. L., Tadros, P. N., Laing, J. G., Beyer, E. C., Yamada, K. A. et al. (2000) Dephosphorylation and intracellular redistribution of ventricular connexin 43 during electrical uncoupling induced by ischemia. Circ. Res. 87, 656–662.CrossRefGoogle Scholar
  3. 3.
    Burwell, L. S., Brookes, P. S. (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid. Redox. Signal 10, 579–599.CrossRefGoogle Scholar
  4. 4.
    Duranski, M. R., Greer, J. J., Dejam, A., Jaganmohan, S., Hogg, N., Langston, W. et al. (2005) Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240.CrossRefGoogle Scholar
  5. 5.
    Gonzalez, F. M., Shiva, S., Vincent, P. S., Ringwood, L. A., Hsu, L. Y., Hon, Y. Y. et al. (2008) Nitrite anion provides potent cytoprotective and anti-apoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation 117, 2986–2994.CrossRefGoogle Scholar
  6. 6.
    Gönczi, M., Papp, R., Kovács, M., Seprényi, Gy., Végh, Á. (2009) Modulation of gap junctions by nitric oxide contributes to the antiarrhythmic effect of sodium nitroprusside. Br. J. Pharmacol. 156, 786–793.CrossRefGoogle Scholar
  7. 7.
    Iwase, H., Robin, E., Guzy, R. D., Mungai, P. T., Vanden Hoek, T. L., Chandel, N.S. et al. (2007) Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes. Free Radial. Biol. Med. 43, 590–599.CrossRefGoogle Scholar
  8. 8.
    Jongsma, H. J., Wilders, R. (2000) Gap junctions in cardiovascular disease. Circ. Res. 86, 1193–1197.CrossRefGoogle Scholar
  9. 9.
    Kevil, C. G., Lefer, D. J. (2011) Review focus on inorganic nitrite and nitrate in cardiovascular health and disease. Cardiovasc. Res. 89, 489–491.CrossRefGoogle Scholar
  10. 10.
    Kevil, C. G., Kolluru, G. K., Pattillo, C. B., Giordano, T. (2011) Inorganic nitrite therapy: historical perspective and future directions. Free Radical Biol. Med. 51, 576–593.CrossRefGoogle Scholar
  11. 11.
    Kis, A., Végh, Á., Papp, J. Gy., Parratt, J. R. (1999) Repeated cardiac pacing extends the time during which canine hearts are protected against ischaemia-induced arrhythmias: role of nitric oxide. J. Mol. Cell. Cardiol. 31, 1229–1241.CrossRefGoogle Scholar
  12. 12.
    Kiss, A., Juhász, L., Seprényi, Gy., Kupai, K., Kaszaki, J., Végh, Á. (2010) The role of nitric oxide, superoxide and peroxynitrite in the anti-arrhythmic effects of preconditioning and peroxynitrite infusion in anaesthetized dogs. Br. J. Pharmacol. 160, 1263–1272.CrossRefGoogle Scholar
  13. 13.
    Kohr, M. J., Sun, J., Aponte, A., Wang, G., Gucek, M., Murphy, E. et al. (2011) Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ. Res. 108, 418–426.CrossRefGoogle Scholar
  14. 14.
    Kovács, M., Kiss, A., Gönczi, M., Miskolczi, M., Seprényi, Gy., Kaszaki, J., Kohr, M., Murphy, E., Végh, Á. (2015) Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: Is protein S-nitrosylation involved? Plos One 24; 10: e0122243.Google Scholar
  15. 15.
    Lefer, D. J. (2006) Nitrite therapy for protection against ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 290, F777–F778.Google Scholar
  16. 16.
    Lefer, D. J., Nakanishi, K., Vinten-Johansen, J. (1993) Endothelial and myocardial cell protection by a cysteine-containing nitric oxide donor after myocardial ischaemia and reperfusion. J. Cardiovasc. Pharmacol. 22, S34–S43.Google Scholar
  17. 17.
    Lundberg, J. O., Carlström, M., Larsen, F. J., Weitzberg, E. (2011) Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc. Res. 89, 525–532.CrossRefGoogle Scholar
  18. 18.
    Méry, P. F., Pavoine, C., Belhassen, L., Pecker, F., Fishcmeister, R. (1993) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J. Biol. Chem. 268, 26286–26295.PubMedGoogle Scholar
  19. 19.
    Miskolczi, G., Gönczi, M., Kovács, M., Seprényi, Gy., Végh, Á. (2015) Further evidence for the role of gap junctions in the delayed antiarrhythmic effect of cardiac pacing. Can. J. Physiol. Pharmacol. 93, 545–553.CrossRefGoogle Scholar
  20. 20.
    Papp, R., Gönczi, M., Kovács, M., Seprényi, Gy., Végh, Á. (2007) Gap junctional uncoupling plays a trigger role in the antiarrhythmic effect of ischaemic preconditioning. Cardiovasc. Res. 74, 396–405.CrossRefGoogle Scholar
  21. 21.
    Smith, W. T., Fleet, W. F., Johnson, T. A., Engle, C. L., Cascio, W. E. (1995) The 1b phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Circulation 92, 3051–3060.CrossRefGoogle Scholar
  22. 22.
    Végh, Á., Gönczi, M., Miskolczi, G., Kovács, M. (2013) Regulation of gap junctions by nitric oxide influences the generation of arrhythmias resulting from acute ischemia and reperfusion in vivo. Frontiers in Pharmacology 4, 76–82.CrossRefGoogle Scholar
  23. 23.
    Végh, Á., Komori, S., Szekeres, L., Parratt, J. R. (1992) Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats. Cardiovasc. Res. 26, 487–495.CrossRefGoogle Scholar
  24. 24.
    Végh, Á., Papp, R. (2011) Possible mechanisms of the acute ischemia-induced ventricular arrhythmias: the involvement of gap junctions. In: Tripathi, O. N., Ravens, U., Sanguinetti, M. C. (eds) Heart Rate and Rhythm. Molecular Basis, Pharmacological Modulation and Clinical Applications, Springer-Verlag, Berlin Heidelberg, pp. 525–543.Google Scholar
  25. 25.
    Végh, Á., Papp, J. Gy., Parratt, J. R. (1994) Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 h after rapid cardiac pacing. Br. J. Pharmacol. 113, 1081–1082.CrossRefGoogle Scholar
  26. 26.
    Végh, Á., Szekeres, L., Parratt, J. R. (1992) Preconditioning of the ischaemic myocardium; involvement of the L-arginine–nitric oxide pathway. Br. J. Pharmacol. 107, 648–652.CrossRefGoogle Scholar
  27. 27.
    Walker, M. J. A., Curtis, M. J., Hearse, D. J., Campbell, R. W. F., Janse, M. J., Yellon, D. M., Cobbe, S. M., Coker, S. J., Harness, J. B., Harron, D. W. G., Higgins, A. J., Julian, D. G., Lab, M. J., Manning, A. S., Northover, B. J., Parratt, J. R., Riemersma, R. A., Riva, E., Russell, D. C., Sheridan, D. J., Winslow, E., Woodward, B. (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovasc. Res. 22, 447–455.CrossRefGoogle Scholar
  28. 28.
    Webb, A., Bond, R., McLean, P., Uppal, R., Benjamin, N., Ahluwalia, A. (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc. Natl Acad. Sci. USA 101, 13683–13688.CrossRefGoogle Scholar
  29. 29.
    White, R. L., Doeller, J. E., Verselis, V. K., Wittenberg, B. A. (1990) Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J. Gen. Physiol. 95, 1061–1075.CrossRefGoogle Scholar
  30. 30.
    Zweier, J. L., Wang, P., Samouilov, A., Kuppusamy, P. (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nature Medicine 1, 804–809.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Gottfried Miskolczi
    • 1
  • Márton Gönczi
    • 1
  • Mária Kovács
    • 1
  • Ágnes Végh
    • 1
    Email author
  1. 1.Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary

Personalised recommendations