Advertisement

Acta Biologica Hungarica

, Volume 68, Issue 1, pp 14–21 | Cite as

Diurnal Variation of the Melanin-Concentrating Hormone Level in the Hypothalamus

  • Balázs Gerics
  • Ferenc Szalay
  • Péter Sótonyi
  • Veronika JancsikEmail author
Open Access
Article

Abstract

Melanin-concentrating hormone (MCH), the neuropeptide produced mainly in the hypothalamus, plays an operative role in regulating food intake and the sleep/wake cycle. Considering that these physiological functions pursue diurnal variations, we checked whether the total hypothalamic MCH level depends on the time of the day. The aggregated MCH peptide content of the whole MCH neuron population was significantly higher at the end of the sleeping period (lights on), than at the end of the active period (lights off). This result, together with earlier observations, indicates that in contrast to the MCH gene expression, the level of MCH peptide is object of circadian variation in the hypothalamus.

Keywords

Neuropeptide circadian rhythm energy homeostasis sleep 

References

  1. 1.
    Bittencourt, J. C., Presse, F., Arias, C., Peto, C., Vaughan, J., Nahon, J. L., Vale, W., Sawchenko, P. E. (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319, 218–245.CrossRefGoogle Scholar
  2. 2.
    Bittencourt, J. C. (2011) Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen. Comp. Endocrinol. 172, 185–197.CrossRefGoogle Scholar
  3. 3.
    Croizier, S., Cardot, J., Brischoux, F., Fellmann, D., Griffond, B., Risold, P. Y. (2013) The vertebrate diencephalic MCH system: a versatile neuronal population in an evolving brain. Front Neuroendocrinol. 34, 65–87.CrossRefGoogle Scholar
  4. 4.
    Croizier, S., Franchi-Bernard, G., Colard, C., Poncet, F., La Roche, A., Risold, P. Y. (2010) A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems. PLoS One 5:e15471.CrossRefGoogle Scholar
  5. 5.
    Cvetkovic, V., Brischoux, F., Jacquemard, C., Fellmann, D., Griffond, B., Risold, P. Y. (2004) Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J. Neurochem. 91, 911–919.CrossRefGoogle Scholar
  6. 6.
    Dias Abdo Agamme, A. L., Aguilar Calegare, B. F., Fernandes, L., Costa, A., Lagos, P., Torterolo, P., D’Almeida, V. (2015) MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 74, 9–15.CrossRefGoogle Scholar
  7. 7.
    Fraigne, J. J., Peever, J. H. (2013) Melanin-concentrating hormone neurons promote and stabilize sleep. Sleep 36, 1767–1768.CrossRefGoogle Scholar
  8. 8.
    Gooley, J. J., Saper, C. B. (2010) Anatomy of the mammalian circadian system. In: Kryger, M. H., Reth, T., Dement, W. C. (eds), Principles and Practice of Sleep Medicine (5th ed.). Elsevier Health Sciences.Google Scholar
  9. 9.
    Harthoorn, L. F., Sañé, A., Nethe, M., Van Heerikhuize, J. J. (2005) Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell. Mol. Neurobiol. 25, 1209–1223.CrossRefGoogle Scholar
  10. 10.
    Hassani, O. K., Lee, M. G., Jones, B. E. (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc. Natl Acad. Sci. USA 106, 2418–2422.CrossRefGoogle Scholar
  11. 11.
    Jego, S., Glasgow, S. D., Herrera, C. G., Ekstrand, M., Reed, S. J., Boyce, R., Friedman, J., Burdakov, D., Adamantidis, A. R. (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 1637–1643.CrossRefGoogle Scholar
  12. 12.
    Konadhode, R. R., Pelluru, D., Blanco-Centurion, C., Zayachkivsky, A., Liu, M., Uhde, T., Glen, W. B. Jr., van den Pol, A. N., Mulholland, P. J., Shiromani, P. J. (2013) Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 33, 10257–10263.CrossRefGoogle Scholar
  13. 13.
    Macneil, D. J. (2013) The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front. Endocrinol. (Lausanne) 4:49. doi: 10.3389/fendo.2013.00049. eCollection 2013CrossRefGoogle Scholar
  14. 14.
    Nahon, J. L. (2006) The melanocortins and melanin-concentrating hormone in the central regulation of feeding behavior and energy homeostasis. C. R. Biol. 329, 623–638.CrossRefGoogle Scholar
  15. 15.
    Nahon, J. L., Presse, F., Bittencourt, J. C., Sawchenko, P. E., Vale, W. (1989) The rat melanin-concentrating hormone messenger ribonucleic acid encodes multiple putative neuropeptides coexpressed in the dorsolateral hypothalamus. Endocrinology 125, 2056–2065.CrossRefGoogle Scholar
  16. 16.
    Pissios, P., Bradley, R. L., Maratos-Flier, E. (2006) Expanding the scales: The multiple roles of MCH in regulating energy balance and other biological functions. Endocr. Rev. 27, 606–620.CrossRefGoogle Scholar
  17. 17.
    Pissios, P., Maratos-Flier, E. (2003) Melanin-concentrating hormone: from fish skin to skinny mammals. Trends Endocrinol. Metab. 14, 243–248.CrossRefGoogle Scholar
  18. 18.
    Qu, D., Ludwig, D. S., Gammeltoft, S., Piper, M., Pelleymounter, M. A., Cullen, M. J., Mathes, W. F., Przypek, R., Kanarek, R., Maratos-Flier, E. (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247.CrossRefGoogle Scholar
  19. 19.
    Saper, C. B., Fuller, P. M. (2007) Inducible clocks: living in an unpredictable world. Cold Spring Harb. Symp. Quant. Biol. 72, 543–550.CrossRefGoogle Scholar
  20. 20.
    Stütz, A. M., Staszkiewicz, J., Ptitsyn, A., Argyropoulos, G. (2007) Circadian expression of genes regulating food intake. Obesity (Silver Spring) 15, 607–615.CrossRefGoogle Scholar
  21. 21.
    Torterolo, P., Scorza, C., Lagos, P., Urbanavicius, J., Benedetto, L., Pascovich, C., López-Hill, X., Chase, M. H., Monti, J. M. (2015) Melanin-concentrating hormone (MCH): Role in REM sleep and depression. Front Neurosci. 9:475. doi: 10.3389/fnins.2015.0047CrossRefGoogle Scholar
  22. 22.
    Urstadt, K. R., Stanley, B. G. (2015) Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst. Neurosci. 9:8. doi: 10.3389/fnsys.2015.00008.CrossRefGoogle Scholar
  23. 23.
    Viale, A., Ortola, C., Hervieu, G., Furuta, M., Barbero, P., Steiner, D. F., Seidah, N. G., Nahon, J. L. (1999) Cellular localization and role of prohormone convertases in the processing of pro-melaninconcentrating hormone in mammals. J. Biol. Chem. 274, 6536–6545.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Balázs Gerics
    • 1
  • Ferenc Szalay
    • 1
  • Péter Sótonyi
    • 1
  • Veronika Jancsik
    • 1
    Email author
  1. 1.Department of Anatomy and HistologyUniversity of Veterinary MedicineBudapestHungary

Personalised recommendations