Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 4, pp 364–372 | Cite as

NADPH-Diaphorase Histochemistry Selectively Stains Peripheral and Central Sensory Structures of Lumbricid Earthworms

  • Zsuzsanna Solt
  • Andrea Zsombok
  • Edit Pollák
  • László MolnárEmail author
Article

Abstract

By means of whole mount NADPH-diaphorase histochemistry the distribution pattern of primary sensory cells (PSC) and the pathway of their central processes in the ventral nerve cord (VNC) ganglia were investigated in the lumbricid earthworms, Eisenia fetida and Lumbricus terrestris. The distribution pattern of the stained structures seemed to be the same in both species investigated. Strong labelling occurred in sensory fibre branches of segmental nerves and in each of the sensory longitudinal axon bundles of VNC ganglia. Based on their anatomical location some NADPH-d positive central sensory cells were identified from among which the putative tactile receptors were characterized by constant, strong staining.

Keywords

Earthworm– ventral nerve cord ganglia– sensory longitudinal axon bundles– central sensory cells– NADPH-diaphorase histochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bicker, G., Schmachtenberg, O., De Vente, J. (1996) The nitric oxide/cyclic GMP messenger system in olfactory pathways of the locust brain. Eur. J. Neurosci. 8, 2635–2643.CrossRefGoogle Scholar
  2. 2.
    Csoknya, M., Takács, B., Koza, A., Dénes, V., Wilhelm, M., Hiripi, L., Kaslin, J., Elekes, K. (2005) Neurochemical characterization of nervous elements innervating the body wall of earthworms (Lumbricus, Eisenia): immunohistochemical and pharmacological studies. Cell Tissue Res. 321, 479–490.CrossRefGoogle Scholar
  3. 3.
    Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M., Snyder, S. H. (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissue. Proc. Natl Acad. Sci. USA 88, 7797–7801.CrossRefGoogle Scholar
  4. 4.
    De Vries-Schoumacker, H. (1977) Fluorescence and ultrastructural localisation of aminergic neurons in the nerve cord of Eisenia foetida (Annelida, Oligochaeta). Cell Tissue Res. 185, 351–360.CrossRefGoogle Scholar
  5. 5.
    Dorsett, D. A. (1978) Organization of the nerve cord. In: Mill, P. J. (ed.) Physiology of Annelids. Academic Press, London. pp. 115–156.Google Scholar
  6. 6.
    Elphick, M. R., Kemenes, G., Staras, K., O’Shea, M. (1995) Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. J. Neurosci. 15, 7653–7664.CrossRefGoogle Scholar
  7. 7.
    González, A. A., Muñoz, A., Muñoz, M., Marín, O., Arévalo, R., Porteros, A., Alonso, J. R. (1996) Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles walt) and its relation to catecholaminergic neuronal structures. Brain Res. 727, 49–64.CrossRefGoogle Scholar
  8. 8.
    Günther, J. (1971) Mikroanatomie des Bauchmarks von Lumbricus terrestris. Z. Zellforsch. 60, 826–849.Google Scholar
  9. 9.
    Günther, J. (1972) Giant motor neurons in the earthworm. Comp. Biochem. Physiol. 42, 967–973.CrossRefGoogle Scholar
  10. 10.
    Günther, J., Walther, J. B. (1971) Funktionelle Anatomie der dorsalen Riesenfaser-Systeme von Lumbricus terrestris. Z. Morph. Tiere 70, 253–280.CrossRefGoogle Scholar
  11. 11.
    Johansson, K. U. I., Carlberg, M. (1994) NADPH-diaphorase histochemistry and nitric oxide synthase activity in deuterocerebrum of the crayfish, Pacifastacus leniusculus (Crustacea, Decapoda). Neurosci. Lett. 649, 36–42.Google Scholar
  12. 12.
    Kitamura, Y., Naganoma, Y., Horita, H., Tsuji, N., Shimizu, R., Ogawa, H., Oka, K. (2001) Visualization of nitric oxide production in the earthworm ventral nerve cord. Neurosci. Res. 40, 175–181.CrossRefGoogle Scholar
  13. 13.
    Leake, L. D., Moroz, L. L. (1996) Putative nitric oxide synthase (NOS)-containing cells in the central nervous system of the leech, Hirudo medicinalis: NADPH-diaphorase histochemistry. Brain research 723, 115–124.CrossRefGoogle Scholar
  14. 14.
    Licata, A., Ainis, L., Martella, S., Ricca, M. B., Licata, P., Lauriano, E. R., Zaccone, G. (2002) Immunohistochemical localization of nNOS in the skin and nerve fibers of the earthworm Lumbricus terrestris L. (Annelida Oligochaeta). Acta histochemica 104, 289–295.CrossRefGoogle Scholar
  15. 15.
    Matsumoto, T., Nakane, M., Pollock, J. S., Kuk, J. E., Förstermann, U. (1993) A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci. Lett. 155, 61–64.CrossRefGoogle Scholar
  16. 16.
    Mill, P. J. (1978) Sense organs and sensory pathways. In: Mill, P. J. (ed.) Physiology of annelids. Academic Press, London New York, pp. 63–114.Google Scholar
  17. 17.
    Molnár, L., Kiszler, G., Pollák, E., Deres, L. (2006) Distribution pattern of γ-amino butiric acid immunoreactive neural structures in the central and peripheral nervous system of the tubicid worm, Limnodrilus hoffmeisteri. Hydrobiologia 564, 33–43.CrossRefGoogle Scholar
  18. 18.
    Muñoz, M., Muñoz, A., Marín, O., Alonso, J. R., Arévalo, R., Porteros, A., González, A. (1996) Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog, Rana perezi. J. Comp. Neurol. 367, 54–69.CrossRefGoogle Scholar
  19. 19.
    Reglődi, D., Slezák, S., Lubics, A., Szelier, M., Elekes, K., Lengvári, I. (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res. 288, 575–582.CrossRefGoogle Scholar
  20. 20.
    Rude, S. (1966) Monoamine-containing neurons in the nerve cord and the body wall of Lumbricus terrestris L. J. Comp. Neurol. 128, 397–412.CrossRefGoogle Scholar
  21. 21.
    Schmidt, H. H. H. W., Gagne, G. D., Nakane, M., Pollock, J. S., Miller, M. F., Murad, F. (1992) Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 40, 1439–1456.CrossRefGoogle Scholar
  22. 22.
    Smeets, W. J. A. J., Alonso, J. R., González, A. (1997) Distribution of NADPH-diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko. J. Comp. Neurol. 377, 121–141.CrossRefGoogle Scholar
  23. 23.
    Spörhase-Eichmann, U., Winkler, M., Schürmann, F. W. (1998) Dopaminergic sensory cells in the epidermis of the earthworm. Nat. Wiss. 85, 547–550.CrossRefGoogle Scholar
  24. 24.
    Vincent, S. R. (1992) Histochemistry of endogenous enzymes. In: Bolam, J. P. (ed.) Experimental Neuroanatomy. Oxford University Press, New York, pp. 153–171.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Zsuzsanna Solt
    • 1
  • Andrea Zsombok
    • 2
  • Edit Pollák
    • 1
  • László Molnár
    • 1
    Email author
  1. 1.Department of Comparative Anatomy and Developmental BiologyUniversity of PécsPécsHungary
  2. 2.Department of Physiology, School of MedicineTulane UniversityNew OrleansUSA

Personalised recommendations