Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 4, pp 345–363 | Cite as

Anatomical and Physiological Background Permitting Spatial Odor Sensation in Stylommatophoran Molluscs

A Review
  • Tibor KissEmail author
  • Nóra Krajcs
Article

Abstract

Earlier experiments demonstrated that in order to place protracted tentacles and thereby olfactory receptors in an appropriate position for optimal perception of odor stimuli extraordinary complex movements are required. Until recently both large scale tentacle movements and patterned tentacle movements have been attributed to the concerted involvement of the tentacle retractor muscle and muscles of tegumentum. Recently the existence of three novel muscles in the posterior tentacles of Helix has been discovered. The present review, based on experimental data obtained by our research group, outlines the anatomy, physiology and pharmacology of these muscles that enable the tentacles to execute complex movements observed during foraging both in naïve and food-conditioned snails. Our findings are also compared as far as possible with earlier and recent data obtained on innervation characteristics and pharmacology of molluscan muscles.

Keywords

Gastropoda– tentacles– flexor muscles– neurotransmitters– modulators– olfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, T. G. J., Abogadie, F. C., Brown, D. A. (2006) Simultaneous release of glutamate and acetylcholine from single magnocellular “cholinergic” basal forebrain neurons. J. Neurosci. 26, 1588–1595.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amsellen, J., Nicaise, G. (1976) Distribution of the glio-intestinal system in molluscs. II. Electron microscopy of tonic and phasic muscles in the digestive tracts of Aplysia and other opistobranchs. Cell Tissue, 165, 19-71-184.Google Scholar
  3. 3.
    Ascher, P., Nowak, L., Kehoe, J. S. (1986) Glutamate-activated channels in molluscan and vertebrate neurones. In: J. M., Ritchie, R. D., Keynes, L. Bolis (eds), Ion Channels in Neural Membranes. Alan R. Liss, New York, pp. 283–295.Google Scholar
  4. 4.
    Barrantes, J. F. (1970) The neuromuscular junctions of a pulmonate mollusc. I. Ultrastructural study. Z. Zellforsch. 104, 205–212.CrossRefGoogle Scholar
  5. 5.
    Blankenship, J. E., Wachtel, H., Kandel, E. R. (1971) Ionic mechanisms of excitatory, inhibitory, and dual synaptic actions mediated by an identified interneuron in abdominal ganglion of Aplysia. J. Neurophysiol. 36, 76–92.CrossRefGoogle Scholar
  6. 6.
    Brooks, D. D., Huddart, H., Lennard, R., Hill, R. B. (1990) Calcium utilization in contractures induced by acetylcholine or high-potassium saline in molluscan proboscis muscles. J. Exp. Biol. 149, 379–394.Google Scholar
  7. 7.
    Brown, D. A. (2010) Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. J. Mol. Neurosci. 41, 340–346.CrossRefPubMedGoogle Scholar
  8. 8.
    Chase, R. (1986) Lessons from snail tentacles. Chemical Senses 11, 411–426.CrossRefGoogle Scholar
  9. 9.
    Chase, R. (2002) Behavior and its Neural Control in Gastropod Mollusks. Oxford University Press, New York.Google Scholar
  10. 10.
    Chase, R., Croll, R. (1981) Tentacular function in snail olfactory orientation. J. Comp. Physiol. A 143, 357–362.CrossRefGoogle Scholar
  11. 11.
    Chase, R. A., Tolloczko, B. (1993) Tracing neural pathways in snail olfaction: from the tip of the tentacles to the brain and beyond. Microsc. Res. Tech. 24, 214–230.CrossRefPubMedGoogle Scholar
  12. 12.
    Cottrell, G. A., Schot, L. P., Dockray, G. J. (1983) Identification and probable role of a single neurone containing the neuropeptide Helix FMRFamide. Nature 304, 638–640.CrossRefPubMedGoogle Scholar
  13. 13.
    Dale, N., Kandel, E. (1993) L-Glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. Proc. Natl Acad. Sci. USA 90, 7163–7167.CrossRefPubMedGoogle Scholar
  14. 14.
    Elekes, K. (1978) Ultrastructure of synapses in the central nervous system of lamellibranch molluscs. Acta Biol. Acad. Sci. Hung. 29, 139–154.PubMedGoogle Scholar
  15. 15.
    Elekes, K. (2000) Ultrastructural aspects of peptidergic modulation in the peripheral nervous system of Helix pomatia. Microsc. Res. Tech. 49, 534–546.CrossRefPubMedGoogle Scholar
  16. 16.
    Kiss, T., Elekes, K. (1972) Myo-neural junctions in the ventricle of the snail Helix pomatia. Acta Biol. Acad. Sci. Hung. 23, 207–209.CrossRefPubMedGoogle Scholar
  17. 17.
    Elekes, K., Kiss, T., Fujisawa, Y., Hernádi, L., Erdélyi, L., Muneoka, Y. (2000) Mytilus inhibitory peptides (MIP) in the central and peripheral nervous system of the pulmonate gastropods, Lymnaea stagnalis and Helix pomatia: distribution and physiological actions. Cell Tissue Res. 302, 115–134.CrossRefPubMedGoogle Scholar
  18. 18.
    Elekes, K., Kiss, T., S.-Rózsa, K. (1973) Effect of Ca-free medium on the ultrastructure and excitability of the myocardial cells of the snail Helix pomatia L. J. Mol. Cell. Cardiol. 8, 133–138.CrossRefGoogle Scholar
  19. 19.
    Elekes, K., Ude, J. (1993) An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: ultrastructure and synaptic connections. J. Neurocytol. 22, 1–13.CrossRefGoogle Scholar
  20. 20.
    Elekes, K., Ude, J. (1994) Peripheral connections of FMRFamide-like immunoreactive neurons in the snail, Helix pomatia: an immunogold electron microscopic study. J. Neurocytol. 23, 758–769.CrossRefPubMedGoogle Scholar
  21. 21.
    Endean, R. (1972) Aspects of molluscan pharmacology. Chapter 13. In: Florkin, M., Scheer, B. T. (eds) Chemical Zoology. vol. VII. Mollusca. Academic Press, New York and London.Google Scholar
  22. 22.
    Fox, L. E., Lloyd, P. E. (1999) Glutamate is a fast excitatory transmitter at some buccal neuromuscular synapses in Aplysia. J. Neurophysiol. 82, 1477–1488.CrossRefPubMedGoogle Scholar
  23. 23.
    Fox, L.E., Lloyd, P. E. (2002) Mechanisms involved in persistent facilitation of neuromuscular synapses in Aplysia. J. Neurophysiol. 87, 2018–2030.CrossRefPubMedGoogle Scholar
  24. 24.
    Gelperin, A., Tank, D. V., Tesauro, J. (1989) Olfactory processing and associative memory: cellular and modelling studies. In: Byrne, J. H., Berry, W. O. (ed.) Neural Models and Plasticity. Theoretical and Empirical Approaches. Academic Press, Orlando, pp. 133–159.CrossRefGoogle Scholar
  25. 25.
    Gerschenfeld, H. M. (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol. Rev. 53, 1–119.CrossRefGoogle Scholar
  26. 26.
    Hatakeyama, D., Aonuma, H., Ito, E., Elekes, K. (2007) Localization of glutamate-like immunoreactive neurons in the central and peripheral nervous system of the adult and developing pond snail, Lymnaea stagnalis. Biol. Bull. 213, 172–186.CrossRefPubMedGoogle Scholar
  27. 27.
    Herber, D., Severance, E. C., Cuevas, J., Morgan, D., Gordon, M. (2004) Biochemical and histochemical evidence of nonspecific binding of a7 nAChR antibodies to mouse brain tissue. J. Histochem. Cytochem. 52, 1367–1375.PubMedGoogle Scholar
  28. 28.
    Hernádi, L., Erdélyi, L., Hiripi, L., Elekes, K. (1998) The organization of serotonin-, dopamine-, and FMRFamide-containing neuronal elements and their possible role in the regulation of spontaneous contraction of the gastrointestinal tract in the snail Helix pomatia. J. Neurocytol. 27, 761–775.CrossRefGoogle Scholar
  29. 29.
    Hernádi, L., Kiss, T., Krajcs, N., Teyke, T. (2014) Novel peripheral motor neuros in the posterior tentacles of the snail responsible for local tentacle movements. Invert. Neurosci. 14, 127–136.CrossRefPubMedGoogle Scholar
  30. 30.
    Hernádi, L., Pirger, Z., Kiss, T., Németh, J., Márk, L., Kiss, P., Tamás, A., Lubics, A., Tóth, G., Shioda, S., Reglődi, D. (2008) The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia. Neuroscience 155, 387–402.CrossRefPubMedGoogle Scholar
  31. 31.
    Hernádi, L., Teyke, T. (2012) Novel triplet of flexor muscles in the posterior tentacles of the snail, Helix pomatia. Acta Biol. Hung. 63, 123–128.CrossRefGoogle Scholar
  32. 32.
    Hernádi, L., Teyke, T. (2013) Neuronal background of positioning of the posterior tentacles in the snail Helix pomatia. Cell Tissue Res. 352, 217–225.CrossRefPubMedGoogle Scholar
  33. 33.
    Heyer, C. B., Kater, S. B. (1973) Neuromuscular system in molluscs. Amer. Zool. 13, 247–270.CrossRefGoogle Scholar
  34. 34.
    Hill, R. B. (2001) Role of Ca2+ in excitation-contraction coupling in echinoderm muscle: comparison with role in other tissues. J. Exp. Biol. 204, 897–908.Google Scholar
  35. 35.
    Hill, R. B., Greenberg, M. J., Irisawa, H., Nomura, H. (1970) Electromechanical coupling in a molluscan muscle, the radula protractor of Busycon canaliculatum. J. Exp. Zool. 174, 331–348.CrossRefPubMedGoogle Scholar
  36. 36.
    Holmgren, S., Jensen, J. (2001) Evolution of vertebrate neuropeptides. Brain Res Bull. 55, 723–735.CrossRefPubMedGoogle Scholar
  37. 37.
    Hoyle, C. H. V. (1998) Neuropeptide families: evolutionary perspectives. Regul. Pept. 73, 1–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hökfelt, Z., Broberger, C., Xu, Z.-Q. D., Segeyev, V., Ubink, R., Diez, M. (2000) Neuropeptides–an overview. Neuropharmacology 39, 1337–1356.CrossRefPubMedGoogle Scholar
  39. 39.
    Ikeda, T., Minakata, H., Fujita, T., Muneoka, Y., Kiss, T., Hiripi, L., Nomoto, K. (1992) Neuropeptides isolated from Helix pomatia Part 1. Peptides related to MIP, buccalin, myomodulin-CARP and SCP. In: Yanaihara, N. (ed.), Peptide Chem. Proceedings of the 2nd Japan Symposium on Peptide Chemistry, ESCOM Science Publishers B.V., Leiden. pp. 576–578.Google Scholar
  40. 40.
    Imoto, A., Inoue, R., Tanaka, M., Ito, Y. (1998) Inhibitory NANC neurotransmission in choledochoduodenal junction of rabbits,–a possible role of PACAP. J. Autonom. Nerv. Syst. 70, 189–199.CrossRefGoogle Scholar
  41. 41.
    Inoue, T., Murakami, M., Watanabe, S., Inokuma, Y., Kirino, Y. (2006) In vitro odor–aversion conditioning in a terrestrial mollusk. J. Neurophysiol. 95, 3898–3903.CrossRefPubMedGoogle Scholar
  42. 42.
    Kater, S. B., Heyer, C., Hegmann, J. P. (1971) Neuromuscular transmission in the gastropod mollusc Helisoma trivolvis: Identification of motoneurons. Zeitschrift für vergleichende Physiologie 74, 127–139.CrossRefGoogle Scholar
  43. 43.
    Keating, C., Lloyd, P. E. (1999) Differential modulation of motor neurons that innervate the same muscle but use different excitatory transmitters in Aplysia. J. Neurophysiol. 82, 1759–1767.CrossRefPubMedGoogle Scholar
  44. 44.
    Kehoe, J. (1972) Three acetylcholine receptors in Aplysia neurones. J. Physiol. 225, 115–146.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kehoe, J., McIntosh, M. J. (1998) Two distinct nicotinic receptors, one pharmacologically similar to the vertebrate a7-containing receptor, mediate Cl current in Aplysia neurons. J. Neurosci. 18, 8198–8213.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kerkut, G. A., Lambert, J. D. C., Gayton, R. J., Loker, J. E., Walker, R. J. (1975) Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Comp. Biochem. Physiol. 50A, 1–25.CrossRefGoogle Scholar
  47. 47.
    Kiss, T. (1977) Electrical properties of the cardiac muscle cell membrane and its role in the excitationcontraction coupling. Acta Biochim. Biophys. Acad. Sci. Hung. 12, 291–302.PubMedGoogle Scholar
  48. 48.
    Kiss, T. (2011) Diversity and abundance: the basic properties of neuropeptide. G. Comp. Endocrinol. 172, 10–14.CrossRefGoogle Scholar
  49. 49.
    Kiss, T., Krajcs, N., Pirger, Z., Hernádi, L. (2014) Nicotinic acetylcholine receptors containing the α7-like subunit mediate contractions of muscles responsible for space positioning of the snail, Helix pomatia L. tentacle. Plos One 9(10):e109538 doi:10.1371/journal.pone.0109538.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kiss, T., Pirger, Z. (2006) Neuropeptides as modulators and hormones in terrestrial snails: their occurrence, distribution and physiological significance. Invertebrate Neuropeptides and Hormones: Basic knowledge and recent advances. Kerala, India: Transworld Research Network. pp. 75–110.Google Scholar
  51. 51.
    Kiss, T., S.-Rózsa, K. (1972) Effect of biologically active substances on the spontaneous electrical activity of the heart muscle cells of Helix pomatia L. Annal. Biol., Tihany, 39, 29–38.Google Scholar
  52. 52.
    Kjaer, M. (2004) Mechanical loading. Physiol Rev. 84, 649–698.CrossRefPubMedGoogle Scholar
  53. 53.
    Klein, A. N., Weiss, K. R., Cropper, E. C. (2000) Glutamate is the fast excitatory neurotransmitter of small cardioactive peptide-containing Aplysia radula mechanoafferent neuron B21. Neurosci. Lett. 289, 37–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Kobayashi, M., Muneoka, Y., Fujiwara, M. (1981) The modulatory actions of the possible neurotransmitters in the molluscan radular muscles. In: Rózsa, K. S. (ed.) Adv. Physiol. Sci., Vol. 2, Pergamon Press, Oxford and New York, pp. 319–337.Google Scholar
  55. 55.
    Kononenko, N. L., Zhukov, V. V. (2005) Neuroanatomical and immunocytochemical studies of the head retractor muscle innervation in the pond snail, Lymnaea stagnalis L. Zoology (Jena), 108, 217–237.CrossRefGoogle Scholar
  56. 56.
    Krajcs, N. (2015) Physiology and pharmacology of muscles regulating olfactory orientation of superior tentacles of Helix pomatia. PhD Thesis, Pécs.Google Scholar
  57. 57.
    Krajcs, N., Hernádi, L., Elekes, K., Kimura, S., Kiss, T. (2014) Excitatory neurotransmitters in the tentacle flexor muscles responsible for space positioning of the snail olfactory organ. Invert. Neurosci. 14, 59–69.CrossRefPubMedGoogle Scholar
  58. 58.
    Krajcs, N., Hernádi, L., Pirger, Z., Reglődi, D., Tóth, G., Kiss, T. (2015) PACAP modulates acetylcholine- elicited contractions at nicotinic neuromuscular contacts of the land snail. J. Mol. Neurosci. 57, 492–500.CrossRefPubMedGoogle Scholar
  59. 59.
    Krajcs, N., Márk, L., Elekes, K., Kiss, T. (2012) Morphology, ultrastructure and contractile properties of muscles responsible for superior tentacle movements of the snail. Acta Biol. Hung. 63, 129–140.CrossRefGoogle Scholar
  60. 60.
    Laurienti, P. J., Blankenship, J. E. (1999) Properties of cholinergic responses in isolated parapodial muscle fibers of Aplysia. Neurophysiol. 82, 778–786.CrossRefGoogle Scholar
  61. 61.
    Lecci, A., Santicioli, P., Maggi, C. A. (2002) Pharmacology of transmission to gastrointestinal muscle. Curr. Opinion. Pharmacol. 2, 630–641.CrossRefGoogle Scholar
  62. 62.
    Lemaire, M., Chase, R. (1998) Twitching and quivering of the tentacles during snail olfactory orientation. J. Comp. Physiol. 182, 81–87.CrossRefGoogle Scholar
  63. 63.
    Li, W.-C., Soffe, S. R., Roberts, A. (2004) Glutamate and acetylcholine corelease at developing synapses. Proc. Natl Acad. Sci. USA 101, 15488–15493.CrossRefPubMedGoogle Scholar
  64. 64.
    Luchtel, D. L., Martin, A. W., Deyrup-Olsen, I., Boer, H. H. (1997) Gastropoda: Pulmonata, In: Harrison, F. W., Ruppert, E. (eds), Microscopic Anatomy of Invertebrates. Vol. 6B, Wiley-Liss, Inc., New York, pp. 459–718.Google Scholar
  65. 65.
    Man-Son-Hing, H., Zoran, M. J., Lukowiak, K., Haydon, P. G. (1989) A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels. Nature 341, 237–239.CrossRefPubMedGoogle Scholar
  66. 66.
    Matsuo, R., Kobayashi, S., Yamagishi, M., Ito, E. (2011) Two pairs of tentacles and a pair of procerebra: optimized functions and redundant structures in the sensory and central organs involved in olfactory learning of terrestrial pulmonates. J. Exp. Biol. 214, 879–886.CrossRefPubMedGoogle Scholar
  67. 67.
    Mellon, De. F. (1968) Junctional physiology and motor nerve distribution in the fast adductor muscle of the scallop. Science 160, 1018–1020.CrossRefPubMedGoogle Scholar
  68. 68.
    Moore, P. A., Atema, J., Gerhard, G. A. (1991) Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus. Chemical Senses 16, 663–674.CrossRefGoogle Scholar
  69. 69.
    Moroz, L. L., Győri, J., Salanki, J. (1993) NMDA-like receptors in the CNS of molluscs. Neuroreport 4, 201–204.CrossRefPubMedGoogle Scholar
  70. 70.
    Moser, N., Mechavar, N., Jones, I., Gochberg-Sarver, A., Orr-Urtreger, A., Plomman, M., Salas, R., Molles, B., Marubio, L., Roth, U., Muskos, U., Winzer-Serhan, U., Burgeois, J.-P., LeSourd, A.-M., De Biasi, M., Lindstrom, J., Maelicke, A., Changeux, J.-P., Wevers, A. (2007) Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J. Neurochem. 102, 479–492.CrossRefPubMedGoogle Scholar
  71. 71.
    Motokawa, T. (1984) Connective tissue catch in Echinoderms. Biol. Rev. 59, 255–270.CrossRefGoogle Scholar
  72. 72.
    Muneoka, Y., Twarog, B. (1983). Neuromuscular transmission and excitation-contraction coupling in molluscan muscle. In: Saleuddin, A. S. M., Wilbur, K. M. (eds) The Mollusca, Vol. 4, Academic Press, New York, pp. 3–4.Google Scholar
  73. 73.
    Muneoka, Y., Kobayashi, M. (1992) Comparative aspects of structure and action of molluscan neuropeptides. Experientia 48, 448–456.CrossRefPubMedGoogle Scholar
  74. 74.
    Nassel, D. R. (2009) Neuropeptide signaling in invertebrates. Encyclopedia of Neuroscience 6, 821–828.CrossRefGoogle Scholar
  75. 75.
    Nelson, I. D. (1994) The relation between excitation-contraction coupling and fine structure of a molluscan muscle, the radula retractor of the whelk, Buccinum undulatum. J. Comp. Physiol. 164, 229–237.CrossRefGoogle Scholar
  76. 76.
    Nikitin, E. S., Korshunova, T. A., Zakharov, I. S., Balaban, P. (2008) Olfactory experience modifies the effect of odour on feeding behavior in a goal-related manner. J. Comp. Physiol. 194, 19–26.CrossRefGoogle Scholar
  77. 77.
    Nikitin, E. S., Zakharov, I. S., Samarova, E. I., Kemenes, G., Balaban, P. M. (2005) Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity. Eur. J. Neurosci. 22, 2833–2844.CrossRefGoogle Scholar
  78. 78.
    Paniagua, R., Royuela, M., Garcia-Anchuelo, R. M., Fraile, B. (1996) Ultrastructure of invertebrate muscle cell types. Histol. Histopathol. 11, 181–201.PubMedGoogle Scholar
  79. 79.
    Peschel, M., Straub, V., Teyke, T. (1996) Consequences of food-attraction conditioning in Helix: a behavioral and electrophysiological study. J. Comp. Physiol. A, 178, 317–327.CrossRefGoogle Scholar
  80. 80.
    Pirger, Z., Laszló, Z., Hiripi, L., Hernádi, L., Tóth, G., Lubics, A., Reglődi, D., Kemenes, G., Mark, L. (2010) Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis. J. Mol. Neurosci. 42, 464–471.CrossRefPubMedGoogle Scholar
  81. 81.
    Plesch, B. (1977) An ultrastructural study of the innervation of the musculature of the pond snail Lymnaea stagnalis (L.) with reference to peripheral neurosecretion. Cell Tissue Res. 183, 353–369.CrossRefGoogle Scholar
  82. 82.
    Prescott, S. A., Gill, N., Chase, R. (1997) Neural circuit mediating tentacle withdrawal in Helix aspersa, with specific reference to the competence of the motor neuron C3. J. Neurophysiol. 78, 2951–2965.CrossRefGoogle Scholar
  83. 83.
    Rigon, F., Manica, G., Guma, F., Achaval, M., Faccioni-Heuser, M. C. (2010) Ultrastructural features of the columellar muscle and contractile protein analyses in different muscle groups of Megalobulimus abbreviatus. Tissue & Cell. 42, 53–60.CrossRefGoogle Scholar
  84. 84.
    Rogers, D. C. (1968) Fine structure of smooth muscle and neuromuscular junctions in the optic tentacles of Helix aspersa and Limax flavius. Z. Zellforsch. 89, 80–94.CrossRefPubMedGoogle Scholar
  85. 85.
    Sakharov, D. A. (1970) Cellular aspects of invertebrate neuropharmacology. Annual Rev. Pharmacol. 10, 335–352.CrossRefGoogle Scholar
  86. 86.
    Sanger, J. W., Hill, R. B. (1972) Ultrastructure of the radula protractor of Busycon canaliculatum. Z. Zellforsch. 127, 314–322.CrossRefPubMedGoogle Scholar
  87. 87.
    S.-Rózsa, K. (1984) The pharmacology of molluscan neurons. Prog. Neurobiol. 23, 79–150.CrossRefGoogle Scholar
  88. 88.
    Sugi, H., Suzuki, S. (1978) Ultrastructural an physiological studies on the longitudinal body wall muscle of Dolabella auricularia. I. Mechanical responses and ultrastructure. J. Cell. Biol. 79, 454–466.CrossRefPubMedGoogle Scholar
  89. 89.
    Stern, M., Bicker, G. (2008) Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study. Cell Tissue Res. 333, 333–338.CrossRefPubMedGoogle Scholar
  90. 90.
    Takeuchi, T., Yamazaki, Y., Negoro, T., Fujijami, K., Mukai, K., Fujita, A., Takewaki, T., Hata, F. (2004) Changes in mechanism of PACAP-induced relaxation in longitudinal muscle of the distal colon of Wistar rats with age. Regul. Pept. 118, 1–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Turner, M. B., Szabo-Maas, T. M., Poyer, J. C., Zoran, M. J. (2011) Regulation and restoration of motoneuronal synaptic transmission during neuromuscular regeneration in the pulmonate snail Helisoma trivolvis. 221, 110–125.Google Scholar
  92. 92.
    Twarog, B. (1976) The regulation and control in molluscan muscle. J. Gen. Physiol. 50, 157–169.CrossRefGoogle Scholar
  93. 93.
    Twarog, B. M., Muneoka, Y. (1972) Calcium and the control of contraction and relaxation in a molluscan catch muscle. Cold Spring Harbor Symposium on Quantitative Biology 37, 489–504.CrossRefGoogle Scholar
  94. 94.
    van Nierop, P., Bertrand, S., Munno, D. W., Gouwenberg, Y., Van Minnen, J., Spafford, J. D., Syed, N., Bertrand, D., Smit, A. B. (2006) Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J. Biol. Chem. 281, 1680–1691.CrossRefPubMedGoogle Scholar
  95. 95.
    Wabnitz, R. W. (1976) Mechanical and electromyographic study of the penis retractor muscle (PRM) of Helix pomatia. Comp. Biochem. Physiol. A, 55, 253–259.CrossRefPubMedGoogle Scholar
  96. 96.
    Wabnitz, R. W. (1976) A dual effect of acetylcholine on gastropod smooth muscle preparations. Z. Naturforsch. 31, 730–731.CrossRefGoogle Scholar
  97. 97.
    Walker, R. J., Holden-Dye, L. (1991) Evolutionary aspects of transmitter molecules, their receptors and channels. J. Exp. Biol. 102, Suppl., S7–S29.Google Scholar
  98. 98.
    Walker R. J. (1986) Transmitters and modulators. In: Willows, A. O. D. (ed.) The Mollusca. Neurobiology and Behavior. 9, part 2 Academic Press, Orlando, pp. 279–485.Google Scholar
  99. 99.
    Walker, R. J., Brooks, H. L., Holden-Dye, L. (1996) Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113, S3–S33.CrossRefGoogle Scholar
  100. 100.
    Wu, W.-H., Cooper, R. L. (2012) Serotonin and synaptic transmission at invertebrate neuromuscular junctions. Exp. Neurobiol. 21, 101–112.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Worden, M. K. (1998) Modulation of vertebrate and invertebrate neuromuscular junctions. Neurobiol. 8, 740–745.Google Scholar
  102. 102.
    Yoshida, M., Kobayashi, M. (1991) Neural control of the buccal muscle movement in the african giant snail Achatina fulica. J. Exp. Biol. 155, 415–433.Google Scholar
  103. 103.
    Zakharov, I. S. (1994) Neuronal mechanisms of the organization of behavior. Avoidance behavior of the snail. Neurosci. Behav. Physiol. 24, 63–69.CrossRefPubMedGoogle Scholar
  104. 104.
    Zizzo, M. G., Mulé, F., Serio, R. (2004) Interplay between PACAP and NO in mouse ileum. Neuropharmacology 46, 449–455.CrossRefPubMedGoogle Scholar
  105. 105.
    Zoran, M. J., Haydon, P. G., Matthews, P. J. (1989) Aminergic and peptidergic modulation of motor function at an identified neuromuscular junction in Helisoma. J. Exp. Biol. 142, 225–243.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Experimental Zoology, Balaton Limnological InstituteMTA Centre for Ecological ResearchTihanyHungary

Personalised recommendations