Determination of Zinc Oxide Nanoparticles Toxicity in Root Growth in Wheat (Triticum Aestivum L.) Seedlings


The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L–1 of ZnONPs. Analysis of zinc (Zn) content showed signifcant increase in roots. In vivo detection using fuorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs signifcantly reduced root growth. However, signifcant decrease in shoot growth was observed only after exposure to 400 and 500 mg L–1 of ZnONPs. The reactive oxygen species and lipid peroxidation levels signifcantly increased in roots. Signifcant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L–1 of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignifcation of root cells upon exposure to 500 mg L–1 of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignifcation and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.


  1. 1.

    Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396.

    CAS  Article  Google Scholar 

  2. 2.

    Asztemborska, M., Steborowski, R., Kowalska, J., Bystrzejewska-Piotrowska, G. (2015) Accumulation of aluminium by plants exposed to nano and microsized particles of Al2O3. Int. J. Environ. Res. 9, 109–116.

    CAS  Google Scholar 

  3. 3.

    Brennan, T., Frenkel, C. (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol. 59, 411–416.

    CAS  Article  Google Scholar 

  4. 4.

    Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A. (2007) Zinc in plants. N. Phytol. 173, 677–702.

    CAS  Article  Google Scholar 

  5. 5.

    Bystrzejewska-Piotrowska, G., Golimowski, J., Urban, P. L. (2009) Nanopargal toxicity, waste and environmental management. Waste Manag. 29, 2587–259.

    CAS  Article  Google Scholar 

  6. 6.

    Canõ-Delgado, A., Penfeld, S., Smith, C., Catley, M., Bevan, M. (2003) Reduced cellulose synthesis invokes lignifcations and defense responses in Arabidopsis thaliana. Plant J. 34, 351–362.

    Article  Google Scholar 

  7. 7.

    Córdoba-Pedregosa, M. C., Córdoba, F., Villalba, J. M., González-Reyes, J. M. (2005) Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. J. Exp. Bot. 56, 685–694.

    Article  Google Scholar 

  8. 8.

    Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14, 1125–1129.

    Article  Google Scholar 

  9. 9.

    Finger-Teixeira, A., Ferrarese, M. L. L., Soares, A. R., daSilva, D., Ferrarese-Filho, O. (2010) Cadmium-induced lignifcations restricts soybean root growth. Ecotoxicol. Environ. Saf. 73, 1959–1964.

    CAS  Article  Google Scholar 

  10. 10.

    Halliwell, B., Gutteridge, J. M. C. (1999) The chemistry of free radicals and related ‘reactive species’. Free Radic. Biol. Med. 3, 220.

    Google Scholar 

  11. 11.

    Handy, R. D., Owen, R., Valsami-Jones, E. (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 17, 315–325.

    CAS  Article  Google Scholar 

  12. 12.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophy. 125, 189–198.

    CAS  Article  Google Scholar 

  13. 13.

    Kolbert, Z. S., Pető, A., Lehotai, N., Feigl, G., Ördög, A., Erdei, L. (2012) In vivo and in vitro studies on fuorophore-specifcity. Acta Biol. Szeged 56, 37–41.

    Google Scholar 

  14. 14.

    Kwasniewskia, M., Chwialkowska, K., Kwasniewska, J., Kusak, J., Siwinski, K., Szarejko, I. (2013) Accumulation of peroxidase related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J. Plant Physiol. 170, 185–195.

    Article  Google Scholar 

  15. 15.

    Kwon, Y. I., Abe, K., Endo, M., Osakabe, K., Ohtsuki, N., Nishizawa-Yoko, A., Tagiri, A., Saika, H., Toki, S. (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol. 13, 62–75.

    CAS  Article  Google Scholar 

  16. 16.

    Li, X. N., Ma, H. Z., Jia, P. X., Wang, J., Jia, L. Y., Zhang, T. G., Yang, Y. L., Chen, H. J., Wei, X. (2012) Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol. Environ. Saf. 86, 47–53.

    CAS  Article  Google Scholar 

  17. 17.

    Lin, C. C., Kao, C. H. (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230, 135–143.

    CAS  Article  Google Scholar 

  18. 18.

    Lin, D., Xing, B. (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585.

    CAS  Article  Google Scholar 

  19. 19.

    Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., Haynes, C. L. (2012) Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5, 181–205.

    CAS  Article  Google Scholar 

  20. 20.

    Lybeer, B., Koch, G., VanAcker, J., Goetghebeur, P. (2006) Lignifcation and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann. Bot. 97, 529–539.

    Article  Google Scholar 

  21. 21.

    Ma, H., Williams, P. L., Diamond, S. A. (2013) Ecotoxicity of manufactured ZnO nanoparticles–A review. Environ. Pol. 172, 76–85.

    CAS  Article  Google Scholar 

  22. 22.

    Miralles, P., Church, T. L., Harris, A. T. (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46, 9224–9239.

    CAS  Article  Google Scholar 

  23. 23.

    Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., Zhao, L., Gardea-Torresdey, J. L. (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6, 132–138.

    CAS  Article  Google Scholar 

  24. 24.

    Munzuroglu, O., Geckil, H. (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 43, 203–213.

    CAS  Article  Google Scholar 

  25. 25.

    Rogers, L. A., Dubos, C., Surman, C., Willment, J., Cullis, I. F., Mansfeld, S. D., Campbell, M. M. (2005) Comparison of lignin deposition in three ectopic lignifcation mutants. New Phytol. 168, 123–140.

    CAS  Article  Google Scholar 

  26. 26.

    Ruley, A. T., Sharma, N. C., Sahi, S. V. (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol. Biochem. 42, 899–906.

    CAS  Article  Google Scholar 

  27. 27.

    Sharma, P., Bhatt, D., Zaidi, M. G., Pardha Saradhi, P., Khanna, P. K., Arora, S. (2012) Silver nano-particle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167, 2225–2233.

    CAS  Article  Google Scholar 

  28. 28.

    Smirnoff, N. (1993) The role of active oxygen in the response of plants to water defcit and desiccation. New Phytol. 125, 27–58.

    CAS  Article  Google Scholar 

  29. 29.

    Tronchet, M., Balagué, C., Kroj, T., Jouanin, L., Roby, D. (2010) Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11, 83–92.

    CAS  Article  Google Scholar 

  30. 30.

    Truta, E. C., Gherghe, D. N., Bara, I. C. I., Vochita, G. V. (2013) Zinc induced genotoxic effects in root meristems of Barley seedlings. Not Bot. Horti. Agrobo. 41, 150–156.

    CAS  Article  Google Scholar 

  31. 31.

    Vardar, F., İsmailoğlu, I., İnan, D., Ünal, M. (2011) Determination of stress responses induced by aluminum in maize (Zea mays). Acta Biol. Hung. 62, 156–170.

    CAS  Article  Google Scholar 

  32. 32.

    Watson, J. L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A., Anderson, A.J. (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28, 101–112.

    CAS  Article  Google Scholar 

  33. 33.

    Song, W. Y., Choi, K. M., Kim, D. Y., Geisler, M., Park, J., Vincenzetti, V., Schellenberg, M., Kim, S. A., Lim, Y. P., Noh, E. W., Lee, Y., Martinoia, W. (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. The Plant Cell 22, 2237–2252.

    CAS  Article  Google Scholar 

  34. 34.

    Yanık, F., Vardar, F. (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut. 226, 296.

Download references

Author information



Corresponding author

Correspondence to Ill Min Chung.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prakash, M.G., Chung, I.M. Determination of Zinc Oxide Nanoparticles Toxicity in Root Growth in Wheat (Triticum Aestivum L.) Seedlings. BIOLOGIA FUTURA 67, 286–296 (2016).

Download citation


  • Triticum aestivum
  • zinc oxide nanoparticles
  • root growth
  • reactive oxygen species
  • lignin