Acta Biologica Hungarica

, Volume 67, Issue 3, pp 261–268 | Cite as

New Insight into the Delia Platura Meigen Caused Alteration in Nutrient Content of Soybean (Glycine Max L. Merill)

  • Helga Egri Bosnyákné
  • Ildikó Kerepesi
  • Sándor KeszthelyiEmail author


Climate change has brought about an increasing level of seedcorn maggot (Delia platura Meigen, 1826) (Diptera: Anthomyiidae) damage in Hungary. In order to have a more accurate understanding of the effects of these plant injuries induced by the larvae of D. platura, the nutrient content of soybean (Glycine max L. Merill.) was studied. Our results show that the moisture, raw fat, raw fbre, and raw ash content of the batches damaged by D. platura were signifcantly less in comparison with that of the control samples. In response to the deleterious effect of the insect, the infected soybean plants showed forced ripening (P = 0.004) (P > 0.05). The difference of moisture content between damaged and control samples was 2.30% on average. The fact of nutritional value loss was also refected by the alteration of sugar mobilisation. As the result of this experiment the sucrose breakdown to glucose and fructose during the germination was signifcantly slower in the damaged seeds than that of the control ones. Overall, this late and surprising damage caused by D. platura led to the forced ripening of the affected soybean plants and a signifcant change in their nutritional values. Based on the herein reported results, it is presumable that in cases when the current climatic extremities, which are envisaged to occur more frequently in the future, and effects of agricultural practices will be coincided in the future a qualitative change of the produced soybean batches can be expected through the damage caused by this fy species.


Sugar mobilization protein change soybean seedcorn maggot Delia platura 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abudulai, M., Salifu, A. B., Atakora, D. O., Haruna, M., Denwar, N. N., Baba, I. Y. (2012) Yield loss at the different growth stages in soybean due to insect pests in Ghana. Arch Phytopathol. 45, 1796–1809.CrossRefGoogle Scholar
  2. 2.
    Anderson, J. W., Chen, W. J. (1979) Plant fber. Carbohydrate and lipid metabolism. Am. J. Clin. Nutr. 32, 346–363.CrossRefGoogle Scholar
  3. 3.
    Bae, S. D., Kim, H. J., Mainali, B. P. (2014) Changes in nutritional composition of soybean seed caused by feeding of pentatomid (Hemiptera: Pentatomidae) and alydid bugs (Hemiptera: Alydidae). J. Econ. Entomol. 107, 1055–1060.CrossRefGoogle Scholar
  4. 4.
    Balikó, S. (2015) Szójatermesztés korszerűen, (Soybean modern production), (In Hungarian). S-Press 5 Kft. Szeged. HungaryGoogle Scholar
  5. 5.
    Balikó, S., Bódis, L., Kralovánszky, P. (2007) A szója feldolgozása, felhasználása, (Soybean processing, use), (In Hungarian) Mezőgazda Kiadó, BudapestGoogle Scholar
  6. 6.
    Balikó, S., Bárány, S., Galankó, A., Bene, L., Bene, Z. (2013) Miért nem termelnek több szóját Magyarországon? (Why not produce more soybean in Hungary?) (In Hungarian), Agro Napló 17, 94–96.Google Scholar
  7. 7.
    Bi, J. L., Felton, G. W., Mueller, A. J. (1994) Induced resistance in soybean to Helicoverpa zea: Role of plant protein quality. J. Chem. Ecol. 20, 183–198.CrossRefGoogle Scholar
  8. 8.
    Biswas, G. C. (2013) Insect Pests Of Soybean (Glycine Max L.), Their Nature Of Damage And Succession With The Crop Stages. J. Asiat Soc. Bangladesh. 39, 1–8.CrossRefGoogle Scholar
  9. 9.
    Dirienzo, M. A., Lemke, S. L., Petersen, B. J., Smith, K. M. (2008) Effect of substitution of high stearic low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake. Lipids 43, 451–456.CrossRefGoogle Scholar
  10. 10.
    Ellis, S. A., Scatcherd, J. E. (2007) Bean seed fy (Delia platura, Delia forilega) and onion fy (Delia antiqua) incidence in England and an evaluation of chemical and biological control options. Ann. Appl. Biol. 151, 259–267.CrossRefGoogle Scholar
  11. 11.
    Hammond, R. B. (1990) Infuence of cover crops and tillage on seedcorn maggot (Diptera: Anthomyiidae) populations in soybeans. Environ Entomol. 19, 510–514.CrossRefGoogle Scholar
  12. 12.
    Hammond, R. B. (1997) Long-term conservation tillage studies: impact of no-till on seedcorn maggot (Diptera: Anthomyiidae). Crop Prot. 16, 221–225.CrossRefGoogle Scholar
  13. 13.
    Hammond, R. B., Jeffers, D. L. (1983) Adult Seedcorn Maggots in Soybeans Relay Intercropped into Winter Wheat. Environ Entomol. 12, 1487–1489.CrossRefGoogle Scholar
  14. 14.
    Hammond, R. B., Cooper, R. L. (1993) Interaction of planting times following the incorporation of a living, green cover crop and control measures on seedcorn maggot populations in soybean. Crop Prot. 12, 539–543.CrossRefGoogle Scholar
  15. 15.
    Hill, D. S. (1973) Damage to pea seedlings and brussels sprout transplants by larvae of bean seed fy (Delia platura Meigen), Plant Pat. 22, 49.CrossRefGoogle Scholar
  16. 16.
    Jenzer, G., Mészáros, Z., Sáringer, Gy. (1998) A szántóföldi és kertészeti növények kártevői (Arthropode pests of agri- and horticultural plants). (In Hungarian), Mezőgazda Kiadó. Budapest. HungaryGoogle Scholar
  17. 17.
    Kerepesi, I., Galiba, G. (2000) Osmotic and salt stress induced alteration in carbohydrate content in wheat seedlings. Crop Sci. 40, 482–487.CrossRefGoogle Scholar
  18. 18.
    Liu, D., Ning, X., Li, Z., Yang, D., Li, H., Gao, L. (2015) Discriminating and elimination of damaged soybean seeds based on image characteristics. J. Stored Prod. Res. 60, 67–74.CrossRefGoogle Scholar
  19. 19.
    Magyar Szabvány, Kémiai vizsgálatok és számítások. Magyar Szabványügyi Hivatal, Budapest. (Hungarian Standard, Chemical analyses and calculations. Hungarian Standards Offce, Budapest). (In Hungarian). 1977, 1978, 1981. Moisture content (MSZ 6496:2001; MSZ–Hungarian acronym for the term ‘Hungarian Standard’), raw protein content (MSZ EN ISO 5983-2-:2009), total amino acid content (MSZ EN ISO 13903:2005), total fbre fractions (MTK-1990. II.8.2. MTK–Hungarian acronym for the term ‘Hungarian Feedstuffs Codex’), the fatty acid composition (FAME-001:2001; FAME–acronym for the term ‘Fatty Acid Methyl Ester’)Google Scholar
  20. 20.
    Oerke, E. C. (2006) Crop losses to pests. J. Agr. Sci. 144, 31–43.CrossRefGoogle Scholar
  21. 21.
    Valenciano, J. B., Casquero, P. A., Boto, J. A. (2004) Evaluation of the occurrence of bean plants (Phaseolus vulgaris L.) affected by bean seed fy, Delia platura (Meigen), grown under different sowing techniques and with different forms of pesticide application. Field Crop Res. 85, 103–109.CrossRefGoogle Scholar
  22. 22.
    Volenec, J. J., Nelson, C. J. (1984) Carbohydrate metabolism in leaf meristems of tall fescue II. Relationship to leaf elongation rates modifed by nitrogen fertilization. J. Plant Physiol. 74, 595–600.CrossRefGoogle Scholar
  23. 23.
    Xu, X. P., Liu, H., Tian, L., Dong, X. B., Shen, S. H., Qu, L. Q. (2015) Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chem. 172, 105–116.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Helga Egri Bosnyákné
    • 1
  • Ildikó Kerepesi
    • 2
  • Sándor Keszthelyi
    • 1
    Email author
  1. 1.Department of Plant Production and ProtectionKaposvár University, Faculty of Agricultural and Environmental SciencesKaposvárHungary
  2. 2.Department of Genetics and Molecular BiologyUniversity of Pécs, Faculty of SciencePécsHungary

Personalised recommendations