New Insight into the Delia Platura Meigen Caused Alteration in Nutrient Content of Soybean (Glycine Max L. Merill)


Climate change has brought about an increasing level of seedcorn maggot (Delia platura Meigen, 1826) (Diptera: Anthomyiidae) damage in Hungary. In order to have a more accurate understanding of the effects of these plant injuries induced by the larvae of D. platura, the nutrient content of soybean (Glycine max L. Merill.) was studied. Our results show that the moisture, raw fat, raw fbre, and raw ash content of the batches damaged by D. platura were signifcantly less in comparison with that of the control samples. In response to the deleterious effect of the insect, the infected soybean plants showed forced ripening (P = 0.004) (P > 0.05). The difference of moisture content between damaged and control samples was 2.30% on average. The fact of nutritional value loss was also refected by the alteration of sugar mobilisation. As the result of this experiment the sucrose breakdown to glucose and fructose during the germination was signifcantly slower in the damaged seeds than that of the control ones. Overall, this late and surprising damage caused by D. platura led to the forced ripening of the affected soybean plants and a signifcant change in their nutritional values. Based on the herein reported results, it is presumable that in cases when the current climatic extremities, which are envisaged to occur more frequently in the future, and effects of agricultural practices will be coincided in the future a qualitative change of the produced soybean batches can be expected through the damage caused by this fy species.


  1. 1.

    Abudulai, M., Salifu, A. B., Atakora, D. O., Haruna, M., Denwar, N. N., Baba, I. Y. (2012) Yield loss at the different growth stages in soybean due to insect pests in Ghana. Arch Phytopathol. 45, 1796–1809.

    Article  Google Scholar 

  2. 2.

    Anderson, J. W., Chen, W. J. (1979) Plant fber. Carbohydrate and lipid metabolism. Am. J. Clin. Nutr. 32, 346–363.

    CAS  Article  Google Scholar 

  3. 3.

    Bae, S. D., Kim, H. J., Mainali, B. P. (2014) Changes in nutritional composition of soybean seed caused by feeding of pentatomid (Hemiptera: Pentatomidae) and alydid bugs (Hemiptera: Alydidae). J. Econ. Entomol. 107, 1055–1060.

    Article  Google Scholar 

  4. 4.

    Balikó, S. (2015) Szójatermesztés korszerűen, (Soybean modern production), (In Hungarian). S-Press 5 Kft. Szeged. Hungary

    Google Scholar 

  5. 5.

    Balikó, S., Bódis, L., Kralovánszky, P. (2007) A szója feldolgozása, felhasználása, (Soybean processing, use), (In Hungarian) Mezőgazda Kiadó, Budapest

    Google Scholar 

  6. 6.

    Balikó, S., Bárány, S., Galankó, A., Bene, L., Bene, Z. (2013) Miért nem termelnek több szóját Magyarországon? (Why not produce more soybean in Hungary?) (In Hungarian), Agro Napló 17, 94–96.

    Google Scholar 

  7. 7.

    Bi, J. L., Felton, G. W., Mueller, A. J. (1994) Induced resistance in soybean to Helicoverpa zea: Role of plant protein quality. J. Chem. Ecol. 20, 183–198.

    CAS  Article  Google Scholar 

  8. 8.

    Biswas, G. C. (2013) Insect Pests Of Soybean (Glycine Max L.), Their Nature Of Damage And Succession With The Crop Stages. J. Asiat Soc. Bangladesh. 39, 1–8.

    Article  Google Scholar 

  9. 9.

    Dirienzo, M. A., Lemke, S. L., Petersen, B. J., Smith, K. M. (2008) Effect of substitution of high stearic low linolenic acid soybean oil for hydrogenated soybean oil on fatty acid intake. Lipids 43, 451–456.

    CAS  Article  Google Scholar 

  10. 10.

    Ellis, S. A., Scatcherd, J. E. (2007) Bean seed fy (Delia platura, Delia forilega) and onion fy (Delia antiqua) incidence in England and an evaluation of chemical and biological control options. Ann. Appl. Biol. 151, 259–267.

    Article  Google Scholar 

  11. 11.

    Hammond, R. B. (1990) Infuence of cover crops and tillage on seedcorn maggot (Diptera: Anthomyiidae) populations in soybeans. Environ Entomol. 19, 510–514.

    Article  Google Scholar 

  12. 12.

    Hammond, R. B. (1997) Long-term conservation tillage studies: impact of no-till on seedcorn maggot (Diptera: Anthomyiidae). Crop Prot. 16, 221–225.

    Article  Google Scholar 

  13. 13.

    Hammond, R. B., Jeffers, D. L. (1983) Adult Seedcorn Maggots in Soybeans Relay Intercropped into Winter Wheat. Environ Entomol. 12, 1487–1489.

    Article  Google Scholar 

  14. 14.

    Hammond, R. B., Cooper, R. L. (1993) Interaction of planting times following the incorporation of a living, green cover crop and control measures on seedcorn maggot populations in soybean. Crop Prot. 12, 539–543.

    Article  Google Scholar 

  15. 15.

    Hill, D. S. (1973) Damage to pea seedlings and brussels sprout transplants by larvae of bean seed fy (Delia platura Meigen), Plant Pat. 22, 49.

    Article  Google Scholar 

  16. 16.

    Jenzer, G., Mészáros, Z., Sáringer, Gy. (1998) A szántóföldi és kertészeti növények kártevői (Arthropode pests of agri- and horticultural plants). (In Hungarian), Mezőgazda Kiadó. Budapest. Hungary

    Google Scholar 

  17. 17.

    Kerepesi, I., Galiba, G. (2000) Osmotic and salt stress induced alteration in carbohydrate content in wheat seedlings. Crop Sci. 40, 482–487.

    CAS  Article  Google Scholar 

  18. 18.

    Liu, D., Ning, X., Li, Z., Yang, D., Li, H., Gao, L. (2015) Discriminating and elimination of damaged soybean seeds based on image characteristics. J. Stored Prod. Res. 60, 67–74.

    Article  Google Scholar 

  19. 19.

    Magyar Szabvány, Kémiai vizsgálatok és számítások. Magyar Szabványügyi Hivatal, Budapest. (Hungarian Standard, Chemical analyses and calculations. Hungarian Standards Offce, Budapest). (In Hungarian). 1977, 1978, 1981. Moisture content (MSZ 6496:2001; MSZ–Hungarian acronym for the term ‘Hungarian Standard’), raw protein content (MSZ EN ISO 5983-2-:2009), total amino acid content (MSZ EN ISO 13903:2005), total fbre fractions (MTK-1990. II.8.2. MTK–Hungarian acronym for the term ‘Hungarian Feedstuffs Codex’), the fatty acid composition (FAME-001:2001; FAME–acronym for the term ‘Fatty Acid Methyl Ester’)

  20. 20.

    Oerke, E. C. (2006) Crop losses to pests. J. Agr. Sci. 144, 31–43.

    Article  Google Scholar 

  21. 21.

    Valenciano, J. B., Casquero, P. A., Boto, J. A. (2004) Evaluation of the occurrence of bean plants (Phaseolus vulgaris L.) affected by bean seed fy, Delia platura (Meigen), grown under different sowing techniques and with different forms of pesticide application. Field Crop Res. 85, 103–109.

    Article  Google Scholar 

  22. 22.

    Volenec, J. J., Nelson, C. J. (1984) Carbohydrate metabolism in leaf meristems of tall fescue II. Relationship to leaf elongation rates modifed by nitrogen fertilization. J. Plant Physiol. 74, 595–600.

    CAS  Article  Google Scholar 

  23. 23.

    Xu, X. P., Liu, H., Tian, L., Dong, X. B., Shen, S. H., Qu, L. Q. (2015) Integrated and comparative proteomics of high-oil and high-protein soybean seeds. Food Chem. 172, 105–116.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sándor Keszthelyi.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosnyákné, H.E., Kerepesi, I. & Keszthelyi, S. New Insight into the Delia Platura Meigen Caused Alteration in Nutrient Content of Soybean (Glycine Max L. Merill). BIOLOGIA FUTURA 67, 261–268 (2016).

Download citation


  • Sugar mobilization
  • protein change
  • soybean
  • seedcorn maggot
  • Delia platura