Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 2, pp 195–204 | Cite as

Changes in Antioxidant Enzymes Activities and Proline, Total Phenol and Anthocyanine Contents in Hyssopus Officinalis L. Plants Under Salt Stress

  • Omolbanin JahantighEmail author
  • Farzaneh Najafi
  • Hassanali Naghdi Badi
  • Ramazan Ali Khavari-Nejad
  • Forough Sanjarian
Article

Abstract

The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm–1 of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.

Keywords

Abiotic stress antioxidant enzymes proline salinity Hyssopus officinalis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Pandey, V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plant. 48, 555–560.CrossRefGoogle Scholar
  2. 2.
    Ashraf, M. A., Ashraf, M., Ali, Q. (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42, 559–565.Google Scholar
  3. 3.
    Ashraf, M., Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216.CrossRefGoogle Scholar
  4. 4.
    Azevedo Neto, A. D., Prico, J. T., Eneas-Filho, J., Braga de Abreu, C. E., Gomes-Filho, E. (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 235–241.CrossRefGoogle Scholar
  5. 5.
    Bates, L. S., Waldreman, R. P., Teare I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207.CrossRefGoogle Scholar
  6. 6.
    Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., Rubio, M. C. (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant. 109, 372–381.CrossRefGoogle Scholar
  7. 7.
    Bourgou, S., Kchouk, M. E., Bellila, A., Marzouk, B. (2010) Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 853, 57–60.CrossRefGoogle Scholar
  8. 8.
    Bradford, M. M. (1976) A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  9. 9.
    Buchanan, B. B., Gruissem, W., Jones, R. (2000) Biochemistry and Molecular Biology of Plants. The American Society of Plant Physiologists. USA. Maryland.Google Scholar
  10. 10.
    Chalker-Scott, L. (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv. Bot. Res. 37, 103–127.CrossRefGoogle Scholar
  11. 11.
    Chance, B., Maehly, A. C. (1955) Assay of catalase and peroxidises, Method Enzymol. 2, 764–775.CrossRefGoogle Scholar
  12. 12.
    Chaparzadeh, N., D’Amico, M. L., Khavari-Nejad, R. A., Navari-Izzo, F. (2004) Antioxidative responses of Calandula officinalis under salinity conditions. Plant Physiol. Biochem. 42, 695–701.CrossRefGoogle Scholar
  13. 13.
    Dai, L. P., Xiong, Z. T., Huang, Y., Li, M. J. (2006) Cadmium-induced changes in pigments, total phenolics and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ. Toxicol. 21, 505–512.CrossRefGoogle Scholar
  14. 14.
    Daiponmak, W., Theerakulpisutb, P., Thanonkaoc, P., Vanavichitd A., Prathephaa, P. (2010) Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Sci. Asia 36, 286–291.CrossRefGoogle Scholar
  15. 15.
    Dazy, M., Jung, V., Férard, J., Masfaraud, J. (2008) Ecological recovery of vegetation on a cokefactory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere 74, 57–63.CrossRefGoogle Scholar
  16. 16.
    Fathiazad, F., Hamedeyazdan, S. (2011) A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol. 5, 1959–1966.Google Scholar
  17. 17.
    Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., Chen, F. (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54, 374–381.CrossRefGoogle Scholar
  18. 18.
    Giannopolitis, C. N., Reis, S. K. (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314.CrossRefGoogle Scholar
  19. 19.
    Harborne, J. B., Williams, C. A. (2000) Review: Advances in flavonoid research science 1992. J. Phytochem. 55, 481–504.CrossRefGoogle Scholar
  20. 20.
    Iqbal, M., Ashraf, M. (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant Biol. 48, 181–189.CrossRefGoogle Scholar
  21. 21.
    Jaleel, C., Gopi, R. (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant. 29, 205–209.CrossRefGoogle Scholar
  22. 22.
    Jayasinghe, C., Gotoh, N., Aoki, T., Wada, S. (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 51, 4442–4449.CrossRefGoogle Scholar
  23. 23.
    Kizil, S., Toncer, O., Ipek, A., Arslan, N., Saglam S., Khawar, K. M. (2008) Blooming stages of Turkish hyssop (Hyssopus officinalis L.) affect essential oil composition. Acta Agric. Scand, Sect. B. 58, 273–279.Google Scholar
  24. 24.
    Koca, H., Bor, M., Özdemir, F., Türkan, İ. (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60, 344–351.CrossRefGoogle Scholar
  25. 25.
    Lavid, N., Schwartz, A., Lewinsohn E., Tel-Or, E. (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214, 189–195.CrossRefGoogle Scholar
  26. 26.
    Miller, G. A. D., Suzuki, N., Ciftci-Yilmaz, S. U. L. T. A. N., Mittler, R. O. N. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant cell environ. 33, 453–467.CrossRefGoogle Scholar
  27. 27.
    Nayyar, H., Gupta, D. (2006) Differential sensitivity of C3 and D4 plants to water deficit stress: Association with oxidative stress and antioxidant. Environ. Exp. Bot. 58, 106–113.CrossRefGoogle Scholar
  28. 28.
    Parida, A. K., Das, A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safe. 60, 324–349.CrossRefGoogle Scholar
  29. 29.
    Parida, A., Das, A. B., Sanada, Y., Mohanty, P. (2004) Effects of salinity on biochemical components of the mangrove Aegiceras corniculatum. Aquat. Bot. 80, 77–87.CrossRefGoogle Scholar
  30. 30.
    Passardi, F., Cosio, C., Penel, C., Dunand, C. (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24, 255–265.CrossRefGoogle Scholar
  31. 31.
    Queslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., Lachaal, M. (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32, 289–296.CrossRefGoogle Scholar
  32. 32.
    Roitto, M., Rautio, P., Julkunen-Tiitto, R., Kukkola, E., Huttunen, S. (2005) Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environ. pollut. 137, 603–609.CrossRefGoogle Scholar
  33. 33.
    Sadder, M. T., Anwar, F., Al-Doss, A. A. (2013) Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. Aust. J. Crop Sci. 7, 112–118.Google Scholar
  34. 34.
    Singleton, U. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic- posphotungustic acid reagent. Am. J. Enol. Vitic. 16, 144–158.Google Scholar
  35. 35.
    Sudhaker, C. H., Lakshmi, A., Giridarakumar, S. (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161, 613–619.CrossRefGoogle Scholar
  36. 36.
    Tereshchenko, O. Y., Gordeeva, E. I., Arbuzova, V. S., Khlestkina, E. K. (2012) Anthocyanin pigmentation in Triticum aestivum L.: Genetc basis and role under abiotic stress conditions. J. Stress Physiol. Biochem. 8, pp.16.Google Scholar
  37. 37.
    Verbruggen N., Hermans, C. (2008) Proline accumulation in plants, Amino acids 35, 753–759.CrossRefGoogle Scholar
  38. 38.
    Verdoy, D., De La Peña, T. C., Redondo, F. J., Lucas, M. M., Pueyo, J. J. (2006) Transgenic Medicago Truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ. 29, 1913–1923.CrossRefGoogle Scholar
  39. 39.
    Wolski, T., Baj, T., Kwiatkowski, S. (2006) Hyzop lekarski (Hyssopus officinalis L.) zapomniana roślina lecznicza, przyprawowa oraz miododajna. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia. 61, 1–10.Google Scholar
  40. 40.
    Yazici, I., Türkan I., Sekmen, A. H., Demiral, T. (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61, 49–57.CrossRefGoogle Scholar
  41. 41.
    Zheljazkov, V. D., Astatkie, T. Hristov, A. N. (2012) Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 36, 222–228.CrossRefGoogle Scholar
  42. 42.
    Zhu, H., Chen, X., Pan, X., Zhang, D. (2011) Effects of chloramphenicol on pigmentation, proline accumulation and chlorophyll fluorescence of maize (Zea mays) seedlings. Int. J. Agric. Biol. 13, 677–682.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Omolbanin Jahantigh
    • 1
    Email author
  • Farzaneh Najafi
    • 1
  • Hassanali Naghdi Badi
    • 2
  • Ramazan Ali Khavari-Nejad
    • 1
    • 3
  • Forough Sanjarian
    • 4
  1. 1.Department of Plant Sciences, Faculty of Biological SciencesKharazmi UniversityTehranIran
  2. 2.Institute of Medicinal PlantsMedicinal Plants Research Center, ACECRKarajIran
  3. 3.Department of Biology, Faculty of Sciences, Islamic Azad UniversityScience and Research BranchTehranIran
  4. 4.National Institute of Genetic Engineering and Biotechnology (NIGEB)TehranIran

Personalised recommendations