Changes in Antioxidant Enzymes Activities and Proline, Total Phenol and Anthocyanine Contents in Hyssopus Officinalis L. Plants Under Salt Stress


The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm–1 of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.


  1. 1.

    Agarwal, S., Pandey, V. (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plant. 48, 555–560.

    CAS  Article  Google Scholar 

  2. 2.

    Ashraf, M. A., Ashraf, M., Ali, Q. (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42, 559–565.

    CAS  Google Scholar 

  3. 3.

    Ashraf, M., Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216.

    CAS  Article  Google Scholar 

  4. 4.

    Azevedo Neto, A. D., Prico, J. T., Eneas-Filho, J., Braga de Abreu, C. E., Gomes-Filho, E. (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 235–241.

    Article  Google Scholar 

  5. 5.

    Bates, L. S., Waldreman, R. P., Teare I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207.

    CAS  Article  Google Scholar 

  6. 6.

    Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., Rubio, M. C. (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant. 109, 372–381.

    CAS  Article  Google Scholar 

  7. 7.

    Bourgou, S., Kchouk, M. E., Bellila, A., Marzouk, B. (2010) Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 853, 57–60.

    CAS  Article  Google Scholar 

  8. 8.

    Bradford, M. M. (1976) A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  9. 9.

    Buchanan, B. B., Gruissem, W., Jones, R. (2000) Biochemistry and Molecular Biology of Plants. The American Society of Plant Physiologists. USA. Maryland.

    Google Scholar 

  10. 10.

    Chalker-Scott, L. (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv. Bot. Res. 37, 103–127.

    CAS  Article  Google Scholar 

  11. 11.

    Chance, B., Maehly, A. C. (1955) Assay of catalase and peroxidises, Method Enzymol. 2, 764–775.

    Article  Google Scholar 

  12. 12.

    Chaparzadeh, N., D’Amico, M. L., Khavari-Nejad, R. A., Navari-Izzo, F. (2004) Antioxidative responses of Calandula officinalis under salinity conditions. Plant Physiol. Biochem. 42, 695–701.

    CAS  Article  Google Scholar 

  13. 13.

    Dai, L. P., Xiong, Z. T., Huang, Y., Li, M. J. (2006) Cadmium-induced changes in pigments, total phenolics and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ. Toxicol. 21, 505–512.

    CAS  Article  Google Scholar 

  14. 14.

    Daiponmak, W., Theerakulpisutb, P., Thanonkaoc, P., Vanavichitd A., Prathephaa, P. (2010) Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Sci. Asia 36, 286–291.

    CAS  Article  Google Scholar 

  15. 15.

    Dazy, M., Jung, V., Férard, J., Masfaraud, J. (2008) Ecological recovery of vegetation on a cokefactory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Chemosphere 74, 57–63.

    CAS  Article  Google Scholar 

  16. 16.

    Fathiazad, F., Hamedeyazdan, S. (2011) A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol. 5, 1959–1966.

    Google Scholar 

  17. 17.

    Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., Chen, F. (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54, 374–381.

    CAS  Article  Google Scholar 

  18. 18.

    Giannopolitis, C. N., Reis, S. K. (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59, 309–314.

    CAS  Article  Google Scholar 

  19. 19.

    Harborne, J. B., Williams, C. A. (2000) Review: Advances in flavonoid research science 1992. J. Phytochem. 55, 481–504.

    CAS  Article  Google Scholar 

  20. 20.

    Iqbal, M., Ashraf, M. (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant Biol. 48, 181–189.

    CAS  Article  Google Scholar 

  21. 21.

    Jaleel, C., Gopi, R. (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant. 29, 205–209.

    Article  Google Scholar 

  22. 22.

    Jayasinghe, C., Gotoh, N., Aoki, T., Wada, S. (2003) Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 51, 4442–4449.

    CAS  Article  Google Scholar 

  23. 23.

    Kizil, S., Toncer, O., Ipek, A., Arslan, N., Saglam S., Khawar, K. M. (2008) Blooming stages of Turkish hyssop (Hyssopus officinalis L.) affect essential oil composition. Acta Agric. Scand, Sect. B. 58, 273–279.

    CAS  Google Scholar 

  24. 24.

    Koca, H., Bor, M., Özdemir, F., Türkan, İ. (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60, 344–351.

    CAS  Article  Google Scholar 

  25. 25.

    Lavid, N., Schwartz, A., Lewinsohn E., Tel-Or, E. (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214, 189–195.

    CAS  Article  Google Scholar 

  26. 26.

    Miller, G. A. D., Suzuki, N., Ciftci-Yilmaz, S. U. L. T. A. N., Mittler, R. O. N. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant cell environ. 33, 453–467.

    CAS  Article  Google Scholar 

  27. 27.

    Nayyar, H., Gupta, D. (2006) Differential sensitivity of C3 and D4 plants to water deficit stress: Association with oxidative stress and antioxidant. Environ. Exp. Bot. 58, 106–113.

    CAS  Article  Google Scholar 

  28. 28.

    Parida, A. K., Das, A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safe. 60, 324–349.

    CAS  Article  Google Scholar 

  29. 29.

    Parida, A., Das, A. B., Sanada, Y., Mohanty, P. (2004) Effects of salinity on biochemical components of the mangrove Aegiceras corniculatum. Aquat. Bot. 80, 77–87.

    CAS  Article  Google Scholar 

  30. 30.

    Passardi, F., Cosio, C., Penel, C., Dunand, C. (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24, 255–265.

    CAS  Article  Google Scholar 

  31. 31.

    Queslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., Lachaal, M. (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32, 289–296.

    Article  Google Scholar 

  32. 32.

    Roitto, M., Rautio, P., Julkunen-Tiitto, R., Kukkola, E., Huttunen, S. (2005) Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Environ. pollut. 137, 603–609.

    CAS  Article  Google Scholar 

  33. 33.

    Sadder, M. T., Anwar, F., Al-Doss, A. A. (2013) Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. Aust. J. Crop Sci. 7, 112–118.

    CAS  Google Scholar 

  34. 34.

    Singleton, U. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolybdic- posphotungustic acid reagent. Am. J. Enol. Vitic. 16, 144–158.

    CAS  Google Scholar 

  35. 35.

    Sudhaker, C. H., Lakshmi, A., Giridarakumar, S. (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161, 613–619.

    Article  Google Scholar 

  36. 36.

    Tereshchenko, O. Y., Gordeeva, E. I., Arbuzova, V. S., Khlestkina, E. K. (2012) Anthocyanin pigmentation in Triticum aestivum L.: Genetc basis and role under abiotic stress conditions. J. Stress Physiol. Biochem. 8, pp.16.

    Google Scholar 

  37. 37.

    Verbruggen N., Hermans, C. (2008) Proline accumulation in plants, Amino acids 35, 753–759.

    CAS  Article  Google Scholar 

  38. 38.

    Verdoy, D., De La Peña, T. C., Redondo, F. J., Lucas, M. M., Pueyo, J. J. (2006) Transgenic Medicago Truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ. 29, 1913–1923.

    CAS  Article  Google Scholar 

  39. 39.

    Wolski, T., Baj, T., Kwiatkowski, S. (2006) Hyzop lekarski (Hyssopus officinalis L.) zapomniana roślina lecznicza, przyprawowa oraz miododajna. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia. 61, 1–10.

    Google Scholar 

  40. 40.

    Yazici, I., Türkan I., Sekmen, A. H., Demiral, T. (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61, 49–57.

    CAS  Article  Google Scholar 

  41. 41.

    Zheljazkov, V. D., Astatkie, T. Hristov, A. N. (2012) Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind. Crops Prod. 36, 222–228.

    CAS  Article  Google Scholar 

  42. 42.

    Zhu, H., Chen, X., Pan, X., Zhang, D. (2011) Effects of chloramphenicol on pigmentation, proline accumulation and chlorophyll fluorescence of maize (Zea mays) seedlings. Int. J. Agric. Biol. 13, 677–682.

Download references

Author information



Corresponding author

Correspondence to Omolbanin Jahantigh.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahantigh, O., Najafi, F., Badi, H.N. et al. Changes in Antioxidant Enzymes Activities and Proline, Total Phenol and Anthocyanine Contents in Hyssopus Officinalis L. Plants Under Salt Stress. BIOLOGIA FUTURA 67, 195–204 (2016).

Download citation


  • Abiotic stress
  • antioxidant enzymes
  • proline
  • salinity
  • Hyssopus officinalis