Advertisement

Acta Biologica Hungarica

, Volume 67, Issue 1, pp 85–98 | Cite as

The Role of Oxidative Stress Genes and Effect of Ph on Methylene Blue Sensitized Photooxidation of Escherichia Coli

  • Önder İdilEmail author
  • İkbal Macit
  • Özge Kaygusuz
  • Cihan Darcan
Article

Abstract

In this study, the survival time of wild type E. coli W3110 and 11 mutants was analysed with a plate count method in methylene blue added or control groups under daylight fluoroscence illumination (4950 lux) at different pH values (5.0, 6.0, 7.0, and 8.0) in phosphate buffer. As a result, while the number of bacteria did not decrease under photooxidative stress at pH 5.0 and 6.0 during a 6-hour incubation, the wild type and all mutants decreased more than 2 log. at pH 8.0, and approximately one log. at pH 7.0. It was determined that a 2 log decrease in wild type E. coli takes 3.7 h according to t99 value at pH 8, these values were 2.39 h in the katE mutant, 2.64 h in the soxR mutant, 2.67 h in the oxyR mutant, 2.71 h in the sodB mutant, 3 h in the btuE mutant, 3.38 h in the zwf mutant and 3.40 h in the soxS mutant, respectively (p < 0.05). The roles of these genes were proved with complement tests. Finally, it is found that the effectiveness of photooxidative stress is in direct relation with pH, and the katE, soxR, oxyR, sodB, btuE, zwf, and soxS genes are important for the protection against this stress.

Keywords

E. coli photooxidation oxyS soxRS katE sodB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L., Storz, G. (1933) A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator. Cell 90, 43–53.CrossRefGoogle Scholar
  2. 2.
    Bellin J. S., Oster, G. (1933) Photodynamic inactivation of transforming principle. Biochimica et Biophysica Acta 42, 533–535.CrossRefGoogle Scholar
  3. 3.
    Bogdan, C., Röllinghoff, M., Diefenbach, A. (1933) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity, Curr. Opin. Immunol. 12, 64–76.CrossRefGoogle Scholar
  4. 4.
    Cohen, S. N., Chang, A. C. Y., Hsu, L. (1933) Nonchromosomal antibiotic resistance in Bacteria: Genetic transformation of Escherichia coli by R-Factor DNA. Proc. Natl. Acad. Sci. 69, 2110–2114.CrossRefGoogle Scholar
  5. 5.
    Cabiscol, E., Tamarit, J., Ros, J. (1933) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3, 3–8.Google Scholar
  6. 6.
    Davies, C. M., Evison, L. M. (1933) Sunlight and the survival of enteric bacteria in natural waters. J. Appl. Bacteriol. 70, 265–274.CrossRefGoogle Scholar
  7. 7.
    Hoerter, J. D., Arnold, A. A., Kuczynska, D. A., Shibuya, A., Ward, C. S., Sauer, M. G., Gizachew, A., Hotchkiss, T. M., Fleming, T. J., Johnson, S. (1933) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J. Photochem. Photobiol. B 81, 171–180.CrossRefGoogle Scholar
  8. 8.
    Idil, Ö., Özkanca, R., Darcan, C., Flint, K. P. (1933) Escherichia coli: Dominance of red light over other visible light sources in establishing viable but nonculturable state. Photochem. Photobiol. 6, 104–109.Google Scholar
  9. 9.
    Idil, Ö., Darcan, C., Özen, T., Özkanca, R. (1933) The effect of UV-A and various visible light wavelengths radiation on expression level of Escerichia coli oxidative enzymes in seawater. Jundishapur J. Microbiol. 6, 226–232.Google Scholar
  10. 10.
    Kim, S. Y., Kim, E. J., Park, J. W. (1933) Control of singlet oxygen-induced oxidative damage in Escherichia coli. J. Biochem. Mol. Biol. 35, 353–357.Google Scholar
  11. 11.
    Lennox, E. S. (1933) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206.CrossRefGoogle Scholar
  12. 12.
    Li, Z., Demple, B. (1933) Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol. Microbiol. 20, 937–945.CrossRefGoogle Scholar
  13. 13.
    Liochev, S. I., Benov, L., Touati, D., Fridovich, I. (1933) Induction of the sox RS regulon of Escherichia coli by superoxide. J. Biol. Chem. 274, 9479–9481.CrossRefGoogle Scholar
  14. 14.
    McBride, T. J., Schneider, J. E., Floyd, R. A., Loeb, L. A. (1933) Mutations induced by methylene blue plus light in single-stranded M13mp2. Proc. Natl. Acad. Sci. USA 89, 6866–6870.CrossRefGoogle Scholar
  15. 15.
    Ozkanca, R., Sahin, N., Isik, K., Kariptas, E., Flint, K. P. (1933) The effect of toluidine blue on the survival, dormancy and outer membrane porin proteins (OmpC and OmpF) of Salmonella typhimurium LT2 in seawater. J. Appl. Microbiol. 92, 1097–1104.CrossRefGoogle Scholar
  16. 16.
    Simon, M. I., Grossman, L., Vunakis, H. V. (1933) Photosensitized reaction of polyribonucleotides: I. Effects on their susceptibility to enzyme digestion and their ability to act as synthetic messengers. J. Mol. Biol. 12, 50–59.CrossRefGoogle Scholar
  17. 17.
    Tardivo, J. P., Giglio, A. D., Santos de Oliveira, C., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., Turchiello, R. F., Baptista, M. S. (1933) Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagn. Photodyn. 2, 175–191.CrossRefGoogle Scholar
  18. 18.
    Troussellier, M., Bonnefont, J. L., Courties, C., Derrien, A., Dupray, E., Gauthier, M., Gourmelon, M., Joux, F., Lebaron, P., Martin, Y., Pommepuy, M. (1933) Responses of enteric bacteria to environmental stresses in seawater. Oceanol. Acta 21, 6, 965–981.CrossRefGoogle Scholar
  19. 19.
    Visick, J. E., Clarke, S. (1933) RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J. Bacteriol. 179, 4158–4163CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Drlica, K. (1933) Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21, 1–6.CrossRefGoogle Scholar
  21. 21.
    Zheng, M., Doan, B., Schneider, T. D., Storz, G. (1933) OxyR and SoxRS Regulation of fur. J. Bacteriol. 181, 4639–4643.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Önder İdil
    • 1
    Email author
  • İkbal Macit
    • 2
  • Özge Kaygusuz
    • 3
  • Cihan Darcan
    • 3
  1. 1.Faculty of EducationAmasya UniversityAmasyaTurkey
  2. 2.Department of Biology, Institute of SciencesAmasya UniversityAmasyaTurkey
  3. 3.Department of Molecular Biology and Genetics, Faculty of Arts and ScienceBilecik Seyh Edebali UniversityBilecikTurkey

Personalised recommendations