Acta Biologica Hungarica

, Volume 66, Issue 4, pp 449–459 | Cite as

Characteristics and Biodiversity of Endophytic Phosphorus- and Potassium-Solubilizing Bacteria in Moso Bamboo (Phyllostachys Edulis)

  • Zong-Sheng Yuan
  • Fang Liu
  • Guo-Fang ZhangEmail author


Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophos-phates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassium-solubilizing bacteria in Moso Bamboo.


Phyllostachys edulis endophytic bacteria phosphorus- and potassium-solubilization biodiversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basak, B. B., Biswas, D. R. (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil. 317, 235–255.CrossRefGoogle Scholar
  2. 2.
    Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., Hallmann, J. (2005) Endophytic and exophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMSMicrobiol. Ecol. 51, 215–229.Google Scholar
  3. 3.
    Gao, Z. Q., Fu, M. Y. (2006) Characteristics of seasonal changes in soil carbon and nitrogen nutrients of different Phyllostachys pubescens stands. J. Zhejiang Coll. Forest. 23, 248–254.Google Scholar
  4. 4.
    Gaulner, J. M., Feldman, A. W., Zablotowiez, R. M. (1982) Identity and behavior of xylem-residing bacteria rough lemon of florida citrus trees. Appl. Environ. Microb. 43, 1335–1342.Google Scholar
  5. 5.
    Goenadi, D. H., Siswanto, S. Y. (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci. Soc. Am. J. 64, 927–932.Google Scholar
  6. 6.
    Gothwal, R. K., Nigam, V. K., Mohanl, M. K., Samal, D., Ghosh, P. (2006) Phosphate solubilization by rhizospheric bacterial isolates from economically important desert plants. Indian J. Microb. 46, 355–361.Google Scholar
  7. 7.
    Han, H. S., Lee, K. D. (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res. J. Agri. Bio. Sci. 1, 176–180.Google Scholar
  8. 8.
    Han, S., Xia, D. L., Li, L. B., Han, J. G. (2010) Diversity of the phosphate solubilizing bacteria isolated fromthe root of Phyllostachys pubescens. J. Agricul. Univer Hebei. 33, 26–31.Google Scholar
  9. 9.
    Huang, Q. T., Chen, A. L., He, J. (2006) Comparison of soil physical and chemical properties among various Phyllostachys pubescens plantation. J. Fujian Coll. Forest. 26, 299–302.Google Scholar
  10. 10.
    Illmer, P., Schinner, F. (1992) Solubilization of inorganic phosphates by microorganism isolated from forest siol. Soil. Biol. Biochem. 24, 389–395.CrossRefGoogle Scholar
  11. 11.
    Ivanova, R., Bojinova, D., Nedialkova, K. (2006) Rock phosphate solubilization by soil bacteria. J. Univ. Chem. Tech. Metall. 41, 297–302.Google Scholar
  12. 12.
    Jha, B. K., Gandhi Pragash, M., Cletus, J., Raman, G., Sakthivel, N. (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbiol. Biotechnol. 25, 573–581.CrossRefGoogle Scholar
  13. 13.
    Kucey, R. M. N. (1988) Effect of penicillium bilaji on the solubility and uptake of P and micronutri-ents from soil by wheat. Can. J. siol Sci. 68, 261–270.CrossRefGoogle Scholar
  14. 14.
    Loveleen, R., Pankaj, K., Sudhakara, M. R. (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr. Microbiol. 57, 401–406.CrossRefGoogle Scholar
  15. 15.
    Lu, L. K. (1999) Soil Agricultural Chemical Analysis Method. Chinese agricultural Science and technology Press, Beijing.Google Scholar
  16. 16.
    Mano, H., Tanaka, F., Watanabe, A., Kaga, H., Okunishi, S., Morisaki, H. (2006) Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microb. Environ. 21, 86–100.CrossRefGoogle Scholar
  17. 17.
    Mathurot, C., Saisamorn, L. (2009) Phosphate solubilization potential and stress tolerance of rhizbac-teria from rice soil in Northern Thailand. World J. Microbiol. Biotechnol. 25, 305–314.CrossRefGoogle Scholar
  18. 18.
    Naik, P. R., Raman, G., Narayanan, K. B., Sakthivel, N. (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8, 230–243.CrossRefGoogle Scholar
  19. 19.
    Nautiyal, C. S., Bhadauria, S. S., Kumar, P., Lai, H., Mondal, R., Verma, D. (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMSMicrobiol. Lett. 182, 291–296.CrossRefGoogle Scholar
  20. 20.
    Oliveira, C. A., Alves, V. M. C., Marriel, I. E., Gomes, E. A., Scotti, M. R., Carneiro, N. P., Guimaraes, C. T., Schaffert, R. E., Sa, N. M. H. (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol. Biochem. 41, 1782–1787.CrossRefGoogle Scholar
  21. 21.
    Pandey, A., Trivedi, P., Kumar, B., Palni, L. M. (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol. 53, 102–107.CrossRefGoogle Scholar
  22. 22.
    Rashid, M., Khalil, S., Ayub, N., Alam, S., Latif F. (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biol. Sci. 7, 187–196.CrossRefGoogle Scholar
  23. 23.
    Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., Dowling, D. N. (2008) Bacterial endophytes:recent developments and application. FEMS Microbiol. Lett. 278, 1–9.CrossRefGoogle Scholar
  24. 24.
    Selvarajm, P., Munusamy, M., Tongmin, S. (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18, 113–411.Google Scholar
  25. 25.
    Souchie, E. L., Abboud, A. C. D. (2007) Phosphate solubilization by microorganisms from the rhizosphere of Pigeonpea genotypes grown in different soil classes. Semina-Ciencias Agrarias 28, 11–18.CrossRefGoogle Scholar
  26. 26.
    Sridevi, M., Mallaiah, K. V. (2009) Phosphate solubilization by rhizobium strains. Indian J. Microbiol. 149, 98–102.CrossRefGoogle Scholar
  27. 27.
    Wang, G. H., Zhou, D. R., Yang, Q., Jin, J., Liu, X. B. (2005) Solubilization of rock phosphate in liquid culture by fungal isolates from rhizosphere soil. Pedosphere 15, 532–538.Google Scholar
  28. 28.
    Xu, Y. J. (2011) Research progress on pesources diversity of plant endophytes. Guangdong Agricul. Sci. 4, 149–152.Google Scholar
  29. 29.
    Zhang, L. Z., Fan, J. J., Niu, W., Li, T., Wu, R. H., Jin, Y. J. (2011) Isolation of phosphate solubilizing fungus (Aspergillus niger) from Caragana rhizosphere and its potential for phosphate solubilization. Acta. Ecol. Sin. 31, 7571–7578.Google Scholar
  30. 30.
    Zhao, X. R., Lin, Q. M., Sun, Y. X., Yao, J., Zhang, Y. S. (2001) The methods for quantifying capacity of bacteria in dissolving P compounds. Microbiology 28, 1–4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of ForestryFujian Agriculture and Forestry UniversityFuzhou, FujianChina
  2. 2.Mycological Research Center of Fujian Agriculture and Forestry UniversityFuzhou, FujianChina

Personalised recommendations