Acta Biologica Hungarica

, Volume 66, Issue 4, pp 436–448 | Cite as

Chitinase Production by bacillus Subtilis ATCC 11774 and its Effect on Biocontrol of Rhizoctonia Diseases of Potato

  • Wesam I. A. Saber
  • Khalid M. Ghoneem
  • Abdulaziz A. Al-Askar
  • Younes M. RashadEmail author
  • Abeer A. Ali
  • Ehsan M. Rashad


Stem canker and black scurf of potato, caused by Rhizoctonia solani, can be serious diseases causing an economically significant damage. Biocontrol activity of Bacillus subtilis ATCC 11774 against the Rhizoctonia diseases of potato was investigated in this study. Chitinase enzyme was optimally produced by B. subtilis under batch fermentation conditions similar to those of the potato-growing soil. The maximum chitinase was obtained at initial pH 8 and 30 °C. In vitro, the lytic action of the B. subtilis chitinase was detected releasing 355 u.g GlcNAc mh1 from the cell wall extract of R. solani and suggesting the presence of various chitinase enzymes in the bacterial filtrate. In dual culture test, the antagonistic behavior of B. subtilis resulted in the inhibition of the radial growth of R. solani by 48.1% after 4 days. Moreover, the extracted B. subtilis chitinase reduced the growth oiR. solani by 42.3% when incorporated with the PDA plates. Under greenhouse conditions, application of a bacterial suspension of B. subtilis at 109 cell mL−1 significantly reduced the disease incidence of stem canker and black scurf to 22.3 and 30%, respectively. In addition, it significantly improved some biochemical parameters, growth and tubers yield. Our findings indicate two points; firstly, B. subtilis possesses a good biocontrol activity against Rhizoctonia diseases of potato, secondly, the harmonization and suitability of the soil conditions to the growth and activity of B. subtilis guaranteed a high controlling capacity against the target pathogen.


Antagonism antifungal biological control black scurf stem canker disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brewer, M. T., Larkin, R. P. (2005) Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot. 24, 939–950.CrossRefGoogle Scholar
  2. 2.
    Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E. A. (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959.CrossRefGoogle Scholar
  3. 3.
    FAOSTAT (2014) FAOSTAT databases, ( Scholar
  4. 4.
    Fox, R. (2006) Rhizoctonia stem and stolon canker of potato. Mycologist 20, 116–117.CrossRefGoogle Scholar
  5. 5.
    Ghafil, J. A. (2013) Extraction and purification of chitinase from Bacillus subtilis. World J. Exp. Biosci. 1, 5–9.Google Scholar
  6. 6.
    Galeazzi, M. A. M., Sgarbieri, V. C., Constantides, S. M. (1981) Isolation, purification and physico-chemical of polyphenol oxidase (PPO) from a dwarf variety of banana. J. FoodSci. 46, 150–155.Google Scholar
  7. 7.
    Hamid, R., Khan, M. A., Ahmad, M, Ahmad, M. M., Abdin, M. Z., Musarrat, J., Javed, S. (2013) Chitinases: An update. J. Pharm. Bioall. Sci. 5, 21–29.Google Scholar
  8. 8.
    Hiraoka, H., Asaka, O., Ano, T., Shoda, M. (1992) Characteristics of Bacillus subtilis RB14, copro-ducer of peptide antibiotics iturin A and surfactin. J. Gen. Appl. Microbiol. 38, 635–640.CrossRefGoogle Scholar
  9. 9.
    Hsu, S. C., Lockwood, J. L. (1975) Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29, 422–426.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Jeger, M. J., Hide, G. A., Van Den Boogert, P. H. J. F., Termorshuizen, A. J., Van Baarlen, P. (1996) Pathology and control of soil-borne fungal pathogens of potato. Potato Res. 39, 437–469.CrossRefGoogle Scholar
  11. 11.
    Kino, K., Kotanaka, Y., Arai, T., Yagasaki, M. (2009) A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Biosci. Biotech. Biock 73, 901–907.CrossRefGoogle Scholar
  12. 12.
    Kumar, S. S., Rao, R. K. M., Kumar, R. D., Sachin, P., Prasad, C. S. (2013) Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch. Phytopathol. PlantProtec. 46, 487–502.CrossRefGoogle Scholar
  13. 13.
    Kumsingkaew, S., Akarapisan, A. (2014) Efficiency of Bacillus subtilis EPB14 as biocontrol to control bacterial leaf blight of anthurium. J. Agric. Technol. 10, 755–766.Google Scholar
  14. 14.
    Mackinney, G. (1941) Absorbtion of light by chlorophyll solution. J. Bio. Chem. 140, 315–322.Google Scholar
  15. 15.
    Malik, C. P., Singh, M. B. (1980) Estimation of total phenols in plant enzymology and histoenzymology In: Malik, C. P., Singh, M. B. (eds) Plant enzymology and histoenzymology: A text manual. Kalyani Publishers. New Delhi.Google Scholar
  16. 16.
    Maxwell, D. P., Bateman, D. F. (1967) Changes in the activities of some oxidases in extracts of Rhizoctonia-iniected bean hypocotyl in relation to lesion maturation. Phytopathol. 57, 132.Google Scholar
  17. 17.
    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  18. 18.
    Rashad, Y. M., Abdel-Fattah, G. M., Hafez, E. E., El-Haddad, S. A. (2012) Diversity among some Egyptian isolates of Rhizoctonia solani based on anastomosis grouping, molecular identification and virulence on common bean. Aft. J. Microbiol. Res. 6, 6661–6667.Google Scholar
  19. 19.
    Saber, W. I. A., Abd El-Hai, K. M., Ghoneem, K. M. (2009) Synergistic effect of Trichoderma and Rhizobium on both biocontrol of chocolate spot disease and induction of nodulation, physiological activities and productivity of Viciafaba. Res. J. Microbiol. 4, 286–300.CrossRefGoogle Scholar
  20. 20.
    Selvaraj, T., Ambalavanan, S. (2013) Induction of defense-related enzymes in anthurium by application of fungal and bacterial biocontrol agents against Colletotrichum gloeosporioides. Int. J. Curr. Microbiol. App. Sci. 2, 661–670.Google Scholar
  21. 21.
    Thiagarajan, V., Revathi, R., Aparanjini, K., Sivamani, P., Girilal, M., Priya, C. S., Kalaichelvan, P. T. (2011) Extra cellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int. J. Curr. Sci. 1, 30–44.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Wesam I. A. Saber
    • 1
  • Khalid M. Ghoneem
    • 2
  • Abdulaziz A. Al-Askar
    • 3
  • Younes M. Rashad
    • 4
    • 5
    Email author
  • Abeer A. Ali
    • 6
  • Ehsan M. Rashad
    • 1
  1. 1.Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research InstituteAgricultural Research CenterGizaEgypt
  2. 2.Seed Pathology Research Department, Plant Pathology Research InstituteAgricultural Research CenterGizaEgypt
  3. 3.Botany and Microbiology DepartmentFaculty of Science, King Saud UniversityRiyadhSaudi Arabia
  4. 4.Science Department, Teachers CollegeKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research InstituteCity of Scientific Research and Technology ApplicationsAlexandriaEgypt
  6. 6.Mycology and Plant Diseases Survey Department, Plant Pathology Research InstituteAgricultural Research CenterGizaEgypt

Personalised recommendations