Morphological and Physiological Changes in Esterase and Lipid Peroxidation of Two Bean Cultivars Pre-Soaked With Potassium Nitrate Under Salt Stress

Abstract

Two broad bean cultivars (Vicia faba CV Nobaria3 and Vicia faba CV Sakha3) were obtained from Mallwi Agriculture Research Center, El Minia Governorate, Egypt. The seeds were divided into two groups, the first group soaked with distilled water, while the second group were soaked with 3 niM KN03, respectively, for 4 hours. Seeds were sown and left to grow for 3 weeks then treated with different concentrations of NaCl (0.0, 40, 80, 120 and 160 mM) by top irrigation, then they left to grow further for 65 days from sowing. Plant samples were collected for some measurements: leaf area, plant height, root length, fresh and dry weight, photo synthetic pigments, carotenoids, soluble sugars, soluble proteins, total free amino acids, esterase enzyme, as well as MDA (malondialdehyde) content. Salinity reduced both fresh and dry weight in two broad bean cultivars, this reduction were more pronounced in Sakha3 than Nobaria3. Seed pre-soaking with KN03 resulted in enhancement of fresh and dry weight production in both cultivars especially at 40 mM NaCl. Photosynthetic pigments were substantially affected by salt treatment while the carotenoids were increased, seed pre-soaking with KN03 improved these components. The soluble sugars, amino acids as well as soluble proteins showed various responses with increasing salinity in the cultivars, seed pre-soaking with KN03 has improved these parameters to some extent. The shoots of two cultivars exhibited significant accumulation of MDA, compared to roots exposed to the highest salinity levels. Pre-soaking seeds with KN03 did not improve MDA in shoots but enhanced it in roots, however, in most cases still lower than the absolute control. The assessment of the esterase isozyme profiles on 7.5% native polyacrylamide gel revealed the presence of 13 isoforms in two faba bean plants in response to KNO3 pre-soaking and treatments with different concentrations of NaCl.

Abbreviations

Carot:

(carotenoids)

Chl:

(chlorophyll)

cm:

(centimeter)

EDTA:

(ethylene diaminetertaacetic acid)

g:

(gram)

LA:

(leaf area)

MDA:

(malondialdehyde)

TCA:

(trichloroacetic acid)

WC:

(water content)

References

  1. 1.

    Argerich, C. A., Bradford, K. J. (1989) The effects of priming and aging on seed vigour in tomato. J. Exp. Bot. 40, 599–607.

    Article  Google Scholar 

  2. 2.

    Ashraf M., Foolad, M. R. (2005) Pre-sowing seed treatment - A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv. Agron. 88, 223–265.

    Article  Google Scholar 

  3. 3.

    Azooz, M. (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. and Biol. Engin. 11, 343–350.

    CAS  Google Scholar 

  4. 4.

    Badour, S. S. A. (1959) Analitisch-chemische Untersuchung des Kaliummangels bei Chlorella in Vergleich mit anderen Mangel-Zustanden. Ph.D. Dissertation, Gottingen.

    Google Scholar 

  5. 5.

    Bajehbaj, A. A. (2010) The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. Afr J. Biotech. 9, 1764–1770.

    CAS  Article  Google Scholar 

  6. 6.

    Bandehagh, A., Salekdeh, G. H., Toorchi, M. (2011) Comparative proteomic analysis of canola leaves under salinity stress’. Proteomics 11, 1965–1975.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., Dries, N., Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots: molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Bradford, K. J. (1986) Priming to improve germination under stress conditions. Hort. Sci. 21, 1105–1112.

    Google Scholar 

  9. 9.

    Chandler, P. M., Robertson, M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance’. Annu. Rev. Plant Physiol. Plant mol. Biol. 45, 113–141.

    CAS  Article  Google Scholar 

  10. 10.

    Coppens, L., Dewitte, D. (1990) Esterase and peroxidase zymograms from barley (Hordeum vulgare L.) callus as a biochemical marker system of embryogenesis and organogenesis. Plant Science 67, 97–105.

    CAS  Article  Google Scholar 

  11. 11.

    Cosgrove, D. J. (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol. 125, 131–134.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Cummins, I., Burnet, M., Edwards, R. (2001) Biochemical characterization of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol. Plant. 113, 477–485.

    CAS  Article  Google Scholar 

  13. 13.

    De Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A. (2003) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz. J. Plant Physiol. 15, 113–118.

    Article  Google Scholar 

  14. 14.

    Demir Kaya, M., Okcu, G., Atak, M., Cikili, Y., Kolsarici, O. (2006) Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus. annuus L.). J. Eur. Agron. 24, 291–295.

    Article  CAS  Google Scholar 

  15. 15.

    Ebrahim, M. K. (2005) Amelioration of sucrose-metabolism and yield changes, in storage roots of NaCl-stressed sugar beet, by ascorbic acid. Agrochimica, XLIX (3-4), 93–103.

    Google Scholar 

  16. 16.

    Fales, F. W. (1951) The assimilation and degradation of carbohydrates by yeast cells. J. Biol. Chem. 193, 113–124.

    CAS  PubMed  Google Scholar 

  17. 17.

    FAO (2008) FAO Land and Plant Nutrition Management Service, https://doi.org/www.fao.org/agl/agll/spush.

    Google Scholar 

  18. 18.

    Gadallah, M. A. (1999) Effects of proline and glycinebetaine on Viciafaba in response to salt stress. Biol. Plant 42, 249–257.

    CAS  Article  Google Scholar 

  19. 19.

    Gao, Y. P., Young, L., Bonham-Smith, P., Gusta, L. V. (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol. Biol. 40, 635–644.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Gigova, L., Gacheva, G., Ivanova, N., Pilarski, P. ( 2012) Effects of temperature on synechocystis sp. r10 (cyanoprokaryota) at two irradiance levels, i. effect on growth, biochemical composition and defense enzyme activities. Gen. Plant Physiol. V2, 24–37.

    Google Scholar 

  21. 21.

    Guan, Y. J., Hu, J., Wang, X. J., Shao, C. X. (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ-Sci. B 10, 427–433.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Hamada, A. M., El-Enany, A. E. (1994) Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol. Plant. 36, 75–81.

    CAS  Article  Google Scholar 

  23. 23.

    Harris, D., Rashid, A., Miraj, G., Arif M., Shah, H. (2007) On-farm’ seed priming with zinc sulphate solution -A cost-effective way to increase the maize yields of resource poor farmers. Field Crops Res. 102, 119–127.

    Article  Google Scholar 

  24. 24.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplast. 1. Kinetics and stiochiom-etry of fatty acid peroxidation. Arch. Bioch. Biophys. 125, 189–198.

    CAS  Article  Google Scholar 

  25. 25.

    Hus, J. L., Sung, J. M. (1997) Antioxidant role of glutatnione associated with accelerated agina and hydration of triploid Watermelon seeds. Physiol Plant. 100, 967–974.

    Article  Google Scholar 

  26. 26.

    Hussein, M. M., Abd El-Rheem, K. M., Khaled, S. M., Youssef, R. A. (2011) Growth and nutrients status of wheat as affected by ascorbic acid and water salinity. Nature and Science 9, 64–69.

    Google Scholar 

  27. 27.

    Jyotsna, V., Srivastava, A. K. (1998) Physiological basis of salt stress resistance in pigeon pea (Cajanuscajan L.)-II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol. Biochem. 25, 89–94.

    Google Scholar 

  28. 28.

    Khan, M. A., Ahmed, M. Z., Hameed, A. (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67, 535–540.

    Article  Google Scholar 

  29. 29.

    Khosravinejad, H. F. R., Farboondia, T. (2008) Effect of salinity on photosynthetic pigments, respiration and water content in barley varieties. Pah. J. Biol. Sci. 11, 2438–2442.

    CAS  Article  Google Scholar 

  30. 30.

    Lima, A. L. S., DaMatta, F. M., Pinheiro, H. A., Totola, M. R., Loureiro, M. E. (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 47, 239–247.

    CAS  Article  Google Scholar 

  31. 31.

    Lowery, O. H., Rosebrough, N. H., Farr, A. L., Randall, R. J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193, 291–297.

    Google Scholar 

  32. 32.

    McDonald, M. B. (1999) Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27, 177–237.

    Google Scholar 

  33. 33.

    Metzner, H., Rau, H., Senger, H. (1965) Untersuchungen zur synchronisierbarkareit einzelener-pig-ment. Mangel Mutanten von Chlorella. Planta 65, 186–194.

    CAS  Article  Google Scholar 

  34. 34.

    Moeinrad, H. (2008) The relationship between some physiological traits and salt tolerance in pistachio genotypes. Desert. 13, 129–136.

    Google Scholar 

  35. 35.

    Mohammadi, G. R., Dezfuli, M. P. M., Sharifzadeh, F. (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen. Appl. Plant Physiol. 34, 215–226.

    Google Scholar 

  36. 36.

    Moore, S., Stein, W. (1948) Partition chromatography of amino acids on starch. Annual. N.Y. Acad Sci. 49, 265–278.

    CAS  Article  Google Scholar 

  37. 37.

    Mukherjee, S., Bhattacharyya, P., Duttagupta, A. K. (2004) Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies. Environ Interactions 30, 811–814.

    CAS  Google Scholar 

  38. 38.

    Munns, R., Brady, C. J., Barlow, E. W. (1979) Solute accumulation in the apex and leaves of wheat during water stress. Aust. Plant Physiol. 6, 379–389.

    CAS  Google Scholar 

  39. 39.

    OlfaBaatour, R., Kaddour, W., Aidi Wannes, M., Lachaal Marzouk, B. (2009) Salt effects on the growth, mineral nutrition, essential oil yield and composition of marjoram (Origanum majorana). Acta Physiol. Plant. 10, 0374-4.

  40. 40.

    Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., Khan, M. A. (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degradation Develop. 19, 429–453.

    Article  Google Scholar 

  41. 41.

    Roy, N. K., Srivastava, A. K. (2000) Adverse effect of salt stress conditions on chlorophyll content in wheat (Triticum aestivum L.) leaves and its amelioration through pre-soaking treatments. Indian J. Agric. Sci. 70, 777–778.

    Google Scholar 

  42. 42.

    Sallam, H. A. (1999) Effect of some seed-soaking treatments on growth and chemical components of faba bean plants under saline conditions. Ann. Agric. Sci. (Cairo). 44, 159–171.

    Google Scholar 

  43. 43.

    Sarkar, R. K., Malik, G. C. (2001) Effect of foliar spray of potassium nitrate and calcium nitrate on grass pea (Lathyrus sativus L.) grown in rice fallows. LathyrusLathyrithm Newsletter 2, 47–48.

    Google Scholar 

  44. 44.

    Schlegel, H. G. (1956) The recovery of organic acid by Chlorella in the light. Planta 47, 510–526.

    CAS  Article  Google Scholar 

  45. 45.

    Takhti, S., Shekafandeh, A. (2012) Effect of different seed priming on germination rate and seedling growth of Ziziphus Spina-Christi. Adv. Environ. Biol. 6, 159–164.

    CAS  Google Scholar 

  46. 46.

    Tanksley, S. D., Orton, T. J. (eds) (1983) Isoenzymes in plant genetics and breeding. Part A, Elsevier Amsterdam, New York.

    Google Scholar 

  47. 47.

    Wang, Z. Q, Yuan, Y. Z., Ou, J. Q., Lin, Q. H., Zhang, C. F. (2007) Glutamine synthetase and gluta-mate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Original Research Article. J. of Plant Physiol. 164, 695–701.

    CAS  Article  Google Scholar 

  48. 48.

    Wiersma, T. V., Bailey, T. B. (1975) Estimation of leaflet, trifoliate and total leaf area of soybean. Agron. J. 176, 26–30.

    Article  Google Scholar 

  49. 49.

    Wimmer, M. A., Muhling, K. H., Lauchli, A. (2003) The interaction between salinity and boron toxicity affects the sub cellular distribution of ions and proteins in wheat leaves. Plant Cell Environ. 26, 1267–1274.

    CAS  Article  Google Scholar 

  50. 50.

    Zhou, R., Zhao, H. (2004) Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance. Physiol. Plant. 121, 399–408.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaber K. Abd El-Baki.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaddad, M.A.K., Abd El-Baki, G.K., Doaa, M. et al. Morphological and Physiological Changes in Esterase and Lipid Peroxidation of Two Bean Cultivars Pre-Soaked With Potassium Nitrate Under Salt Stress. BIOLOGIA FUTURA 66, 419–435 (2015). https://doi.org/10.1556/018.66.2015.4.6

Download citation

Keywords

  • Amino acids
  • chlorophylls
  • esterase enzyme
  • lipid peroxidation
  • salinity
  • Vicia faba