Acta Biologica Hungarica

, Volume 66, Issue 4, pp 460–463 | Cite as

Genotoxic Effect of Lythrum Salicaria Extract Determined by the Mussel Micronucleus Test

  • Bettina Eck-Varanka
  • Nóra KovátsEmail author
  • Katalin Hubai
  • Gabor Paulovits
  • Árpád Ferincz
  • Eszter Horváth
Short Communication


A wide range of aquatic plants have been proven to release allelochemicals, of them phenolics and tannin are considered rather widely distributed. Tannins, however, have been demonstrated to have genotoxic capacity. In our study genotoxic potential of Lythrum salicaria L. (Purple Loosestrife, family Lythraceae) was assessed by the mussel micronucleus test, using Unio pictorum. In parallel, total and hydrolysable tannin contents were determined. Results clearly show that the extract had a high hydrolysable tannin content and significant mutagenic effect. As L. salicaria has been long used in traditional medicine for chronic diarrhoea, dysentery, leucorrhoea and blood-spitting, genotoxic potential of the plant should be evaluated not only with regard to potential effects in the aquatic ecosystem, but also assessing its safe use as a medicinal herb.


Lythrum salicaria tannin genotoxicity micronucleus test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolognesi, C., Fenech, M. (2012) Mussel micronucleus cytome assay. Nat. Protoc. 7, 1125–1137.CrossRefGoogle Scholar
  2. 2.
    Chen, J., Zhang, H., Han, Z., Ye, J., Liu, Z. (2012) The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol. Eng. 42, 130–133.CrossRefGoogle Scholar
  3. 3.
    Chukwujekwu, J. C., Van Staden, J. (2014) Cytotoxic and genotoxic effects of water extract of Distephanus angulifolius on Allium cepa Linn. S. Afr J. Bot. 92, 147–150.CrossRefGoogle Scholar
  4. 4.
    Clesceri, L. S., Greenberg, A. E., Eaton, A. D. (eds) (1998) Standard Methods for the Examination of Water and Wastewater, 20th Edition. APHA American Public Health Association. Washington, D.C.Google Scholar
  5. 5.
    Çoban, T., Çitoğlu, G. S., Sever, B., Işan, M. (2003) Antioxidant activities of plants used in traditional medicine in Turkey. Pharm. Biol. 41, 608–613.CrossRefGoogle Scholar
  6. 6.
    Demma, J., Engidawork, E., Hellman B. (2009) Potential genotoxicity of plant extracts used in Ethiopian traditional medicine. J. Ethnopharmacol. 122, 136–142.CrossRefGoogle Scholar
  7. 7.
    Economou, G., Travlos, I. S., Folinas, A., Karamanos, A. J. (2007) Greek oregano (Origanum vulgare ssp. hirtum) as allelopathic plant. J. FoodAgric. Environ. 5, 348–351.Google Scholar
  8. 8.
    Fenech, M., Neville, S. (1992) Conversion of excision-repairable DNA lesions to micronuclei within one cell cycle in human lymphocytes. Environ. Mol. Mutagen. 19, 27–36.CrossRefGoogle Scholar
  9. 9.
    Fennell, C. W., Lindsey, K. L, McGaw, L. J., Sparg, S. G., Stafford, G. I., Elgorashi, E. E. (2004) Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. J. Ethnopharmacol. 94, 205–217.CrossRefGoogle Scholar
  10. 10.
    Ferguson, L. R., van Zijl, P., Holloway, W. D., Jones, W. T. (1985) Condensed tannins induce micro-nuclei in cultured V79 Chinese hamster cells. Mutat. Res. 158, 89–95.CrossRefGoogle Scholar
  11. 11.
    Graça, M. A. S., Bärlocher, F., Gessner, M. O. (eds) (2005) Methods to Study Litter Decomposition. Springer. Dordrecht.Google Scholar
  12. 12.
    Gross, E. M., Erhard, D., Iványi, E. (2003) Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506-509, 583–590.Google Scholar
  13. 13.
    Labieniec, M., Gabryelak, T., Falcioni, G. (2003) Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus. Mutat. Res. 539, 19–28.CrossRefGoogle Scholar
  14. 14.
    Labieniec, M., Gabryelak, T. (2004) Response of DNA, proteins and membrane bilayer in the digestive gland cells of freshwater mussel Unio tumidus to tannins exposure. Toxicol, in Vitro 18, 773–781.CrossRefGoogle Scholar
  15. 15.
    Piwowarski, J. P., Kiss, A. K., Kozłowska-Wojciechowska, M. (2011) Anti-hyaluronidase and anti-elastase activity screening of tannin-rich plant materials used in traditional Polish medicine for external treatment of diseases with inflammatory background. J. Ethnopharmacol. 137, 937–941.CrossRefGoogle Scholar
  16. 16.
    Rauha, J. P., Wolfender, J. L., Salminen, J. P., Pihlaja, K., Hostettmann, K., Vuorela, H. (2001) Characterization of the polyphenolic composition of purple loosestrife (Lythrum salicaria). Z. Naturforsch. C 56, 13–20.CrossRefGoogle Scholar
  17. 17.
    Tunalier, Z., Koşar, M., Küpeli, E., Çaliş¸ I., Başer, K. H. C. (2007) Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of Lythrum salicaria L. extracts. J. Ethnopharmacol. 10, 539–547.CrossRefGoogle Scholar
  18. 18.
    Wozniczki, P., Lewandowska, R., Brzuzan, P., Ziomek, E., Bardega, R. (2004) The level of DNA damage and the frequency of micronuclei in haemolymph of freshwater mussels Anodonta woodiana exposed to benzo[a]pyrene. Acta Toxicol. 12, 41–45.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Bettina Eck-Varanka
    • 1
  • Nóra Kováts
    • 1
    Email author
  • Katalin Hubai
    • 1
  • Gabor Paulovits
    • 2
  • Árpád Ferincz
    • 3
  • Eszter Horváth
    • 1
  1. 1.Department of LimnologyUniversity of PannoniaVeszpremHungary
  2. 2.Centre for Ecological Research, Balaton Limnological InstituteHungarian Academy of SciencesTihanyHungary
  3. 3.Department of AquacultreSzent István UniversityGödöllőHungary

Personalised recommendations