Acta Biologica Hungarica

, Volume 66, Issue 3, pp 282–292 | Cite as

Combined Effects of Colonial Size and Concentration of Microcystis aeruginosa on the Life History Traits of Daphnia similoides

  • Zhang Xiaoli
  • Deng DaoguiEmail author
  • Zhang Kun
  • Wang Wenping
  • Ji Lei


Microcystis colonial size and concentration have detrimental effects on life history traits of Daphnia, but their detailed interactions have remained unclear so far. Our experiments show that the interaction between Microcystis colonial size and concentration on maturation time, life expectancy, net reproductive rate and innate capacity of increase in Daphnia similoides was significant. In all groups, the survival rate of D. similoides was 100% within 8 days. This value then declined quickly in the large-colony groups and in the SH group of Microcystis. Colonial M. aeruginosa significantly reduced the maturation time and body length at maturity of D. similoides. The number of offspring at frst reproduction per female in the SH group of Microcystis was significantly higher than those in other groups. Net reproductive rate of D. similoides in the SL group of Microcystis was significantly higher than those in other groups of Microcystis. The innate capacity of increase of D. similoides in small-colony Microcystis groups was significantly higher than that in the large-colony groups. The results suggested that the effect of small-colony Microcystis on the reproduction of Daphnia was positive under lower concentration, while their toxicity was intensitied under higher concentration when small-colony Microcystis were by Daphnia as food.


Daphnia similoides Microcystis aeruginosa innate capacity of increase life history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alva-Martinez, A. F., Sarma, S. S. S., Nandini, S. (2001) Comparative population dynamics of three species of cladocera in relation to different levels of Chlorella vulgaris and Microcystis aeruginosa. Crustaceana 74, 749–764.CrossRefGoogle Scholar
  2. 2.
    Alva-Martinez, A. F., Sarma, S. S. S., Nandini, S. (2004) Population growth of Daphnia pulex (Cladocera) on a mixed diet (Microcystis aeruginosa with Chlorella or Scenedesmus). Crustaceana 77, 973–988.CrossRefGoogle Scholar
  3. 3.
    Carmichael, W. W., Yu, M. J., He, Z. R., He, J. W., Yu, J. L. (1988) Occurrence of the toxic cyanobacterium (blue-green alga) Microcystis aeruginosa in central China. Arch. Hydrobiol. 114, 21–30.Google Scholar
  4. 4.
    Cerbin, S., Kraak, M. H. S., de Voogt, P. Visser, P. M., Van Donk, E. (2010) Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria. Hydrobiologia 643, 129–138.CrossRefGoogle Scholar
  5. 5.
    Chen, F. Z., Xie, P. (2003) The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake. J. Freshwat. Ecol. 18, 97–104.CrossRefGoogle Scholar
  6. 6.
    Chen, F. Z., Xie, P., Qin, B. Q. (2007) Different competition outcomes among four species of cladocerans under different alga combinations of colonial Microcystis spp. and green alga Scenedesmus obliquus. Hydrobiologia 581, 209–215.CrossRefGoogle Scholar
  7. 7.
    DeMott, W. R. (1999) Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwat. Biol. 42, 263–274.CrossRefGoogle Scholar
  8. 8.
    Deng, D. G., Xie, P., Zhou, Q., Yang, H., Guo, L. G., Geng, H. (2008) Field and experimental studies on the combined impacts of cyanobacterial blooms and small algae on crustacean zooplankton in a large, eutrophic subtropical Chinese lake. Limnology 9, 1–11.CrossRefGoogle Scholar
  9. 9.
    Deng, D. G., Zhang, S., Li, Y. Y., Meng, X. L., Yang, W., Li, Y., Li, X. X. (2010) Effects of Microcystis aeruginosa on population dynamics and sexual reproduction in two Daphnia species. J. Plankton Res. 32, 1385–1392.CrossRefGoogle Scholar
  10. 10.
    Ferrão-Filho, A. S., Azevedo, S. M. F. O., DeMott, W. R. (2000) Effect of toxic and non-toxic cyanobacteria on the life history of tropical and temperature cladoceran. Freshwat. Biol. 45, 1–19.CrossRefGoogle Scholar
  11. 11.
    Fulton III, R. S., Paerl, H. W. (1988) Effect of the blue-green alga Micricystis aeruginosa on zooplankton competition relations. Oecologia 76, 383–389.CrossRefGoogle Scholar
  12. 12.
    Gustafsson, S., Hansson, L. A. (2004) Development of tolerance against toxic cyanobacteria in Daphnia. Aquat. Ecol. 38, 37–44.CrossRefGoogle Scholar
  13. 13.
    Han, B. P., Lin, X., Lei, L. M., Gu, J. G. (2012) Survival of D. galeata in sub-tropical reservoirs: harmful effects of toxic cyanobacteria in food source. Ecotoxicology 21, 1692–1705.CrossRefGoogle Scholar
  14. 14.
    Jarvis, A. C., Hart, R. C., Combrink, S. (1987) Zooplankton feeding on size fractionated Microcystis colonies and Chlorella in a hypertrophic lake (Hartbeespoort Dam, South Africa): implications to resource utilization and zooplankton succession. J. Plankton Res. 9, 1231–1249.CrossRefGoogle Scholar
  15. 15.
    Jiang, X. D., Liang, H. S., Yang, W., Zhang, J., Zhao, Y. L., Chen, L. Q., Zhao, S. Y., Jing, X. L. (2013) Fitness benefits and costs of induced defenses in Daphnia carinata (Cladocera: Daphnidae) exposed to cyanobacteria. Hydrobiologia 702, 105–113.CrossRefGoogle Scholar
  16. 16.
    Li, F., Deng, D. G., Zhang, X. L., Ji, G. Q., Huang, Q. F. (2014) Combined effects of four Microcystis aeruginosa strains and Scenedesmus obliquus concentrations on population dynamics and resting egg formation of two Daphnia species. Limnology 15, 271–279.CrossRefGoogle Scholar
  17. 17.
    Li, S. H., Zhu, H., Xia, J. Z., Yu, M. J., Lin, K. E., Liu, K. S., Le, Z. Y., Chen, Y. X. (1959) The mass culture of unicellular green algae. Acta Hydrobiol. Sin. 4, 462–472Google Scholar
  18. 18.
    Liu, L. P., Li, K., Chen, T. Y., Dai, X. L., Jiang, M., James, S. D. (2011) Effects of Microcystis aeruginosa on life history of water flea Daphnia magna. Chin. J. Oceanol. Limnol. 29, 892–897.CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Xie, P., Chen, F., Xu, X. (2005) Effect of combinations of the toxic cyanobacterium Microcystis aeruginosa PCC7820 and the green alga Scenedesmus on the experimental population of Daphnia pulex. Bull. Environ. Contam. Toxicol. 74, 1186–1191.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Xie, P., Wu, X. P. (2006) Effect of toxic and nontoxic Mirocystis aeruginosa on survival, population-increase, and feeding of two small cladoceran. Bull. Environ. Contam. Toxicol. 77, 566–573.CrossRefGoogle Scholar
  21. 21.
    Nandini, S., Rao, T. R. (1998) Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquat. Ecol. 31, 283–298.CrossRefGoogle Scholar
  22. 22.
    Nandini, S., Sarma, S. S. S., Ramírez-García, P. (2000) Life table demography and population growth of Daphnia leavis (Cladocera, anomopoda) under different densities of Chlorella vulgaris and Microcystis aeruginosa. Crutaceana 73, 1273–1286.CrossRefGoogle Scholar
  23. 23.
    Reinikainen, M., Hietala, J., Walls, M. (1999) Reproductive allocation in Daphnia exposed to toxic cyanobacteria. J. Plankton Res. 21, 1553–1564.CrossRefGoogle Scholar
  24. 24.
    Sarnelle, O., Gustafsson, S., Hansson, L. A. (2010) Effect of cyanobacteria on fitness components of the herbivore Daphnia. J. Plankton Res. 32, 471–477.CrossRefGoogle Scholar
  25. 25.
    Shao, Y. Q., Deng, D. G., Meng, M. R., Zhang, X. L., Li, F. (2014) Effects of colonial Microcystis aeruginosa and interspecific competition on the population dynamics and resting egg formation of two cladocerans. J. Freshwat. Ecol. 29, 213–223.CrossRefGoogle Scholar
  26. 26.
    Sun, R. Y. (1990) Principles of Animal Ecology (3rd ed.). Beijing Normal University Press, pp. 207–212.Google Scholar
  27. 27.
    Yang, H., Xie, P., Zheng, L., Deng, D. G., Zhou, Q., Wu, S. K., Xu, J. (2006) Seasonal variation of microcystins concentration in Lake Chaohu, a shallow subtropical lake in China. Bull. Environ. Contam. Toxicol. 77, 367–374.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Zhang Xiaoli
    • 1
  • Deng Daogui
    • 1
    Email author
  • Zhang Kun
    • 1
  • Wang Wenping
    • 1
  • Ji Lei
    • 1
  1. 1.School of Life Science, An Hui Key Laboratory of Resource and Plant BiologyHuaibei Normal UniversityHuaibeiChina

Personalised recommendations