Acta Biologica Hungarica

, Volume 66, Issue 2, pp 133–148 | Cite as

Hepato- and Nephrotoxicity in Male Albino Rats Exposed to Malathion and Spinosad in Stored Wheat Grains

  • Nour El-Hoda A. ZidanEmail author


Adult male albino rats were fed on stored wheat grains (Triticum aestivum L.) treated with malathion and spinosad at both 8 and 16 ppm for 90 consecutive days to evaluate their hepatic and renal toxicity. The activity of serum acetylcholinesterase (AChE) was decreased in rats treated with the higher concentration of both tested pesticides. Biochemical parameters of liver functions [i.e., aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), acid phosphatase (ACP) activity, as well as total protein, albumin, bilirubin and cholesterol levels] were severely affected especially at higher concentration. Malathion and spinosad elevated the activity of ALT, AST, ALP and ACP in rats treated with the higher concentration. Also, total and direct bilirubin levels increased in rats treated with the higher concentration of both pesticides. On the contrary, both pesticides decreased total protein and albumin levels in treated rats in a concentration-dependent manner. Furthermore, malathion was found to be hyperglycemic. Kidney function parameters (i.e., urea and creatinine levels) were increased in treated rats in a concentration-dependent manner. The above mentioned effects were supported by histopathological examination of liver and kidney tissues. The obtained results indicated also that malathion was able to cause a more pronounced hepato- and renal toxicity in rats than spinosad.


Pesticide rat liver kidney biochemical parameters histopathology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, N., Hoque, M. A., Haque, A., Salam, K. A., Karim, M. R., Rahman, A., Islam, K., Saud, Z. A., Khalek, M. A., Akhand, A. A., Hossain, M., Mandal, A., Karim, M. R., Miyataka, H., Himeno, S., Hossain, K. (2010) Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ. Health 9, 1–9.Google Scholar
  2. 2.
    Assie, L. K., Francis, F., Gengler, N., Haubruge, E. (2007) Response and genetic analysis of malathion-specific resistant Tribolium castaneum (Herbst) in relation to population density. J. Stored Prod. Res. 43, 33–44.Google Scholar
  3. 3.
    Balistreri, W. F., Shaw, L. M. (1987) Liver function. In: Tietz, N. B. (ed.) Fundamentals of Clinical Chemistry. 3rd ed. Saunders Company Philadelphia, London, Toronto, pp. 729–761.Google Scholar
  4. 4.
    Breslin, W. J., Marty, M. S., Vedula, U. V., Liberacki, A. B., Yano, B. L. (2000) Developmental toxicity of Spinosad administered by gavage to CD1 rats and New Zealand white rabbits. Food Chem. Toxicol. 38, 1103–1112.PubMedGoogle Scholar
  5. 5.
    Burtis, C., Edward, A. (1994) Clinical Chemistry. 2nd ed. Vol. 2. Saunders Company, Philadelphia, London, Toronto.Google Scholar
  6. 6.
    Celia, M. H., Wilkinson, J. S. (1973) Liver function. Aust. Vet. J. 49, 163–169.Google Scholar
  7. 7.
    Cleveland, C. (2007) Environmental and health assessments for spinosad against the backdrop of organic certification. In: Felsot, A. J., Racke, K. D. (eds) Certified Organic and Biologically-Derived Pesticides: Environmental, Health, and Efficacy Assessment. American Chemical Society Symposium Series, Washington, D.C., pp. 109–130.Google Scholar
  8. 8.
    Cleveland, C. B., Mayes, M. A., Cryer, S. A. (2001) An ecological risk assessment for spinosad use on cotton. Pest. Manag. Sci. 58, 70–84.Google Scholar
  9. 9.
    Coles, E. H. (1986) Veterinary Clinical Pathology. 4th ed. W.B. Saunders Company, Philadelphia, London, Toronto, Mexico City, Hong Kong, pp. 171–199.Google Scholar
  10. 10.
    Das, U. N. (2012) Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Ann. Hepatol. 11, 409–411.PubMedGoogle Scholar
  11. 11.
    Davis, L., Britten, J. J., Morgan, M. (1997) Cholinesterase: its significance in anaesthetic practice. Anaesthesia 52, 244–260.PubMedGoogle Scholar
  12. 12.
    Ecobichon, D. J. (2001) Toxic effects of pesticides. In: Klaassen, C. D. (ed.) Casarett and Doull’s Toxicology. 5th ed. McGraw Hill, New York, pp. 643–690.Google Scholar
  13. 13.
    Eissa, F. I., Zidan, N. A. (2010) Haematological, biochemical and histopathological alterations induced by abamectin and bacillus thuringiensis in male albino rats. Acta Biol. Hung. 61, 33–44.PubMedGoogle Scholar
  14. 14.
    Eissa, F. I., Zidan, N. A., Hashem, M. Y., Ahmed, S. S. (2014) Insecticidal efficacy of certain bioinsecticides, diatomaceous earth and modified atmospheres against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) on stored wheat. J. Stored Prod. Res. 57, 30–35.Google Scholar
  15. 15.
    El-Banhawy, M. A., Sanad, S. M., Sakr, S. A., El-Elaimy, I. A., Mahran, H. A. (1993) Histopathological studies on the effect of the anticoagulant rodenticide “Brodifacoum” on the liver of rat. J. Egypt. Ger. Soc. Zool. 12, 185–227.Google Scholar
  16. 16.
    Farghaly, M., El-Maghraby, S. (2009) Investigation of chronic toxicity of 14C-fenitrothion and its degradation products on stored soybeans. Environ. Toxicol. Pharmacol. 27, 1–6.PubMedGoogle Scholar
  17. 17.
    Gokcime, A., Gulle, K., Demiri, H., Bayra, D., Kocak, A., Altunta, I. (2007) Effects of diazinon at different doses on rat liver and pancreas tissues. Pestic. Biochem. Phys. 87, 103–108.Google Scholar
  18. 18.
    Gozek, K., Artiran, F. (1990) Fate and showed non-significant effect on the activity of the magnitude of malathion residues in stored maize and enzyme bean seeds. In: Proceedings of the Final Research Co-ordination Meeting. Panel Proceedings Series (IAEA). Research Co-ordination Meeting on Isotopic Tracer Aided Studies of Pesticide Residues in Stored Products, Ankara (Turkey), 30 May–3 Jun 1988./ Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria), pp. 45–55.Google Scholar
  19. 19.
    Grothe, D. W., Boss, S. M., Gries, C. L. (1992) A subchronic toxicity study in CD-1 mice administered XDE-105 in the diet for 3 months. Unpublished Report No. M01290 from Toxicology Research Laboratories, Lilly Research Laboratories, USA. Submitted for publication to WHO by Dow AgroSciences, Letcombe, United Kingdom.Google Scholar
  20. 20.
    Grube, A., Donaldson, D., Kiely, T., Wu, L. (2011) Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  21. 21.
    Kalender, Y., Uzunhisarcikli, M., Ogutcu, A., Acikgoz, F., Kalender, S. (2006) Effects of diazinon on pseudocholinesterase activity and haematological indices in rats: the protective role of vitamin E. Environ. Toxicol. Pharmacol. 22, 46–51.Google Scholar
  22. 22.
    Lasram, M. M., Annabi, A. B., Elj, N., Selmi, S., Kamoun, A., El-Fazaa, S., Gharbi, N. (2009) Metabolic disorders of acute exposure to malathion in adult Wistar rats. J. Hazard. Mater. 163, 1052–1055.Google Scholar
  23. 23.
    Lillie, R. D., Fullmen, H. M. (1976) Histopathologic Technique and Practical Histochemistry. McGraw-Hill, New York, London.Google Scholar
  24. 24.
    Mansour, S. A., Mossa, A. H., Heikal, T. M. (2007) Haematoxicity of a new natural insecticide “spinosad” on male albino rats. Int. J. Agric. Biol. 9, 342–346.Google Scholar
  25. 25.
    Martin, D. W., Mayes, P. A., Rodwell, V. W. (1983) Harper’s Review of Biochemistry. Middle East Edition, California.Google Scholar
  26. 26.
    Ncibi, S., Othman, M. B., Akacha, A., Krifi, M. N., Zourgi, L. (2008) Opuntia ficus indica extract protects against chlorpyrifos-induced damage on mice liver. Food Chem. Toxicol. 46, 797–802.PubMedGoogle Scholar
  27. 27.
    Ogutcu, A., Suludere, Z., Kalender, Y. (2008) Dichlorvos-induced hepatotoxicity in rats and the protective effects of vitamins C and E. Environ. Toxicol. Pharmacol. 26, 355–361.PubMedGoogle Scholar
  28. 28.
    Plaa, G. L. (1975) Toxic responses of the liver. In: Casarett, J., Doull, C. (eds) Toxicology, the Basic Science of Poisons. Macmillan Publishing Co. Inc, New York, Chapter 10.Google Scholar
  29. 29.
    Rahimi, R., Abdollahi, M. (2007) A review on the mechanisms involved in hyperglycemia induced by organophosphorus pesticides. Pestic. Biochem. Physiol. 88, 115–121.Google Scholar
  30. 30.
    Rekha, Raina, S., Hamid, S. (2013) Histopathological effects of pesticide-cholopyrifos on kidney in albino rats. Int. J. Res. Med. Sci. 1, 465–475.Google Scholar
  31. 31.
    Rezg, R., Mornagui, B., El-Fazaa, S., Gharbi, N. (2008) Biochemical evaluation of hepatic damage in subchronic exposure to malathion in rats: effect on superoxide dismutase and catalase activities using native PAGE. C. R. Biologies 331, 655–662.PubMedGoogle Scholar
  32. 32.
    Rezg, R., Mornagui, B., Kamoun, A., El-Fazaa, S., Gharbi, N. (2007) Effect of subchronic exposure to malathion on metabolic parameters in the rat. C. R. Biologies 330, 143–147.PubMedGoogle Scholar
  33. 33.
    Rustemeijer, C., Schouten, J. A., Voerman, H. J., Beynen, A. C., Donker, A. J., Heine, R. J. (2001) Is seudocholinesterase activity related to markers of triacylglycerol synthesis in Type II diabetes mellitus? Clin. Sci. (Lond.) 101, 29–35.Google Scholar
  34. 34.
    Saigal, S., Bhatnagar, V. K., Malviys, A. N. (1982) Effect of selected pesticides on alkaline and acid phosphatase in rat. Toxicol. Lett. 12, 177.Google Scholar
  35. 35.
    Salgado, V. L., Sheets, J. J., Watson, G. B., Schmidt, A. L. (1998) Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence on neural excitation. Pestic. Biochem. Physiol. 160, 103–110.Google Scholar
  36. 36.
    Sayım, F. (2007) Dimethoate-induced biochemical and histopathological changes in the liver of rats. Exp. Toxicol. Pathol. 59, 237–243.PubMedGoogle Scholar
  37. 37.
    Shadnia, S., Ashrafivand, S., Mostafalou, S., Abdollahi, M. (2011) N-acetylcysteine a novel treatment for acute human organophosphate poisoning. Int. J. Pharmacol. 7, 732–735.Google Scholar
  38. 38.
    Stebbins, K. E., Bond, D. M., Novilla, M. N., Reasor, M. J. (2002) Spinosad insecticide: subchronic and chronic toxicity and lack of carcinogenicity in CD-1 mice. Toxicol. Sci. 65, 276–287.PubMedGoogle Scholar
  39. 39.
    Subramanyam, B. H. (2006) Performance of spinosad as a stored grain protectant. In: Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., dos Santos, J. P., Biagi, J. D., Celaro, J. C., Faroni, L. R. D’A., Bortolini, L. de O. F., Sartori, M. R., Elias, M. C., Guedes, R. N. C., da Fonseca, R. G., Scussel, V. M. (eds) Proceedings of the 9th International Working Conference on Stored Product Protection, 15–18 October 2006, Campinas, São Paulo, Brazil. Brazilian Post Harvest Association, Campinas, Brazil, pp. 250–257.Google Scholar
  40. 40.
    Thompson, G. D., Michel, K. H., Yao, R. C., Mynderse, J. S., Mosburg, C. T., Worden, T. V., Chio, E. H., Sparks, T. C., Hutchins, S. H. (1997) The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down Earth 52, 1–5.Google Scholar
  41. 41.
    Vayias, B. J., Athannassiou, C. G., Milonas, D. N., Mavrotas, C. (2010) Persistence and efficacy of spinosad on wheat, maize and barley grains against four major stored product pests. Crop Prot. 29, 496–505.Google Scholar
  42. 42.
    Vinogradova, L. F., Mirzoian, Zh. A., Kharlitskaia, E. V., Beketova, T. P. (1989) Experimental antioxidant therapy in toxic liver damage from CCl4 and chloxyl. Patol. Fiziol. Eksp. Ter. 4, 52–56.Google Scholar
  43. 43.
    Walmsley, R. N., White, G. H. (1994) A Guide to Diagnostic Clinical Chemistry. 3rd ed. Oxford Blackwell Scientific Publication, London, Edinburgh, Boston.Google Scholar
  44. 44.
    Wang, H. P., Liang, Y. J., Long, D. X., Chen, J. X., Hou, W. Y., Wu, Y. J. (2009) Metabolic profiles of serum from rats after subchronic exposure to chlorpyrifos and carbaryl. Chem. Res. Toxicol. 22, 1026–1033.PubMedGoogle Scholar
  45. 45.
    Yano, B. L., Bond, D. M., Novilla, M. N., McFadden, L. G., Reasor, M. J. (2002) Spinosad insecticide: subchronic and chronic toxicity and lack of carcinogenicity in Fischer 344 rats. Toxicol. Sci. 65, 288–298.PubMedGoogle Scholar
  46. 46.
    Yousef, M. I., Awad, T. I., Mohamed, E. H. (2006) Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by vitamin E. Toxicology 227, 240–247.PubMedGoogle Scholar
  47. 47.
    Zidan, N. A. (2013) Insecticidal effectiveness of certain bio-insecticides, inert dusts and modified atmospheres against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) on stored wheat. Acta Phytopathol. Entomol. Hung. 48, 165–176.Google Scholar
  48. 48.
    Zidan, N. A. (2014) Insecticidal efficacy of spinosad, Beauveria bassiana and Metarhizium anisopliae in combination with diatomaceous earth, for controlling Sitophilus oryzae (L.) (Coleoptera: Curculionidae) infesting stored wheat. Acta Phytopathol. Entomol. Hung. 49, 117–128.Google Scholar
  49. 49.
    Zidan, N. A., Galal, O. A. (2012) Evaluation of hematological, cytogenetical and biochemical effects of malathion and spinosad on male albino rats. Am.-Eurasian J. Toxicol. Sci. 4, 118–130.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Pesticides Chemistry and Toxicology Department, Faculty of AgricultureKafrelsheikh UniversityKafr El-SheikhEgypt

Personalised recommendations