Activation of FKHRL1 Plays an Important Role in Protecting Erythroid Cells from Erythropoietin Deprivation-Induced Apoptosis in a Human Erythropoietin-Dependent Leukemia Cell Line, UT-7/EPO

Abstract

FKHRL1 is one of the human homologues of DAF-16, which is concerned with longevity inCaenorhabditis elegans. Previously, we demonstrated that FKHRL1 functions downstream of Akt in erythropoietin (EPO) signaling and that it is directly phosphorylated by activated Akt. Because phosphorylated FKHRL1 loses its transcriptional activity and translocates into the cytoplasm, FKHRL1 appears to be nonfunctional in the presence of EPO. Conversely, EPO deprivation leads to FKHRL1 dephosphorylation and its translocation into the nucleus, suggesting that FKHRL1 becomes active as a transcription factor in the absence of EPO. On the basis of these findings, we hypothesized, by analogy withC elegans, that erythroid cells possess self-defense machinery against life-threatening surroundings. We prepared a dominant-negative mutant of FKHRL1 (FKHRL1-DN) lacking the transactivation domain and prepared FKHRL1 small interfering RNA (siRNA), and we used constructs to transfect a human EPO-dependent cell line, UT-7/EPO. In the parental cells, 24-hour EPO deprivation induced transient cell cycle arrest without apoptosis. On the other hand, stable transfectants expressing FKHRL1-DN or FKHRL1 siRNA underwent rapid apoptosis after EPO deprivation in the UT-7/EPO cells. In conclusion, FKHRL1 activation plays an important role in the extension of survival of erythroid cells after EPO deprivation. This phenomenon appears to correspond to dauer formation in C elegans. Thus, the mechanism of lifespan extension may be broadly conserved fromC elegans to humans.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kaufmann E, Knöchel W. Five years on the wings of fork head.Mech Dev. 1996;57:3–20.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Weigel D, Jäckle H. The fork head domain: a novel DNA binding motif of eukaryotic transcription factors?Cell. 1990;63:455–456.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Weigel D, Jürgens G, Küttner F, Seifert E, Jäckle H. The homeotic genefork head encodes a nuclear protein and is expressed in the terminal regions of theDrosophila embryo.Cell. 1989;57:645–658.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism.Dev Biol. 2002;250:1–23.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres.Neuron. 1995;14:1141–1152.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Li J, Vogt PK. The retroviral oncogene qin belongs to the transcription factor family that includes the homeotic gene fork head.Proc NatlAcad Sci USA. 1993;90:4490–4494.

    Article  CAS  Google Scholar 

  7. 7.

    Borkhardt A, Repp R, Haas OA, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23).Oncogene. 1997;14:195–202.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene toPAX3 in the solid tumour alveolar rhabdomyosarcoma.Nat Genet. 1993;5:230–235.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW Fusion ofPAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma.Cancer Res. 1993;53:5108–5112.

    PubMed  CAS  Google Scholar 

  10. 10.

    Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily.Blood. 1997;90:3714–3719.

    PubMed  CAS  Google Scholar 

  11. 11.

    Thomas JH. Chemosensory regulation of development inC elegans.Bioassays. 1993;15:791–797.

    Article  CAS  Google Scholar 

  12. 12.

    Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: an HNF-3/forkhead family member that can function to double the life-span ofCaenorhabditis elegans.Science. 1997;278:1319–1322.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Ogg S, Paradis S, Gottlieb S, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals inC elegans.Nature. 1997;389:994–999.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf2, an insulin receptor-like gene that regulates longevity and diapause inCaenorhabditis elegans.Science. 1997;277:942–946.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Kops GJ, Burgering BM. Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling.J Mol Med. 1999;77:656–665.

    Article  CAS  Google Scholar 

  16. 16.

    Guarante L, Kenyon C. Genetic pathways that regulate ageing in model organisms.Nature. 2000;408:255–262.

    Article  CAS  Google Scholar 

  17. 17.

    Kashii Y, Uchida M, Kirito K, et al. A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction.Blood. 2000;96:941–949.

    CAS  Google Scholar 

  18. 18.

    Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase.FEBS Lett. 1996;399:333–338.

    Article  CAS  Google Scholar 

  19. 19.

    Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor.Cell. 1999;96:857–868.

    Article  CAS  Google Scholar 

  20. 20.

    Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the helix transcription factor FKHR1.Proc NatlAcad Sci USA. 1999;96:7421–7426.

    Article  CAS  Google Scholar 

  21. 21.

    Brunet A, Kanai F, Stehn J, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport.J Cell Biol. 2002;156:817–828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Cahill CM, Tzivion G, Nasrin N, et al. Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways.J Biol Chem. 2001;276:13402–13410.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Tanaka M, Kirito K, Kashii Y, et al. Forkhead family transcription factor FKHRL1 is expressed in human megakaryocytes: regulation of cell cycling as a downstream molecule of thrombopoietin signaling.J Biol Chem. 2001;276:15082–15089.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Komatsu N, Yamamoto M, Fujita H, et al. Establishment and characterization of an erythropoietin-dependent subline, UT-7/Epo, derived from human leukemia cell line, UT-7.Blood. 1993;82:456–464.

    PubMed  CAS  Google Scholar 

  25. 25.

    Komatsu N, Watanabe T, Uchida M, et al. A member of Forkhead transcription factor FKHRL1 is a downstream effector of STI571-induced cell cycle arrest in BCR-ABL-expressing cells.J Biol Chem. 2003;278:6411–6419.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Dijkers PF, Birkenkamp KU, Lam EW, et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity.J Cell Biol. 2002;156:531–542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Kamura T, Hara T, Matsumoto M, et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase.Nat Cell Biol. 2004;6:1229–1235.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Dijkers PF, Medema RH, Pals C, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1.Mol Cell Biol. 2000;20:9138–9148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Inoue T, Kamiyama J, Sakai T. Sp1 and NF-Y synergistically mediate the effect of vitamin D3 in the p27Kip1 gene promoter that lacks vitamin D response elements.J Biol Chem. 1999;274:32309–32317.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Nakayama K, Nagahama H, Minamishima YA, et al. Targeted disruption ofSkp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication.EMBO J. 2000;19:2069–2081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression.Genes Dev. 2004;18:2602–2607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for?Immunol. 2003;171:1623–1629.

    Article  CAS  Google Scholar 

  34. 34.

    Charvet C, Alberti I, Luciano F, et al. Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases.Oncogene. 2003;22:4557–4568.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Yamazaki S, Iwama A, Takayanagi S, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells.EMBO J. 2006;25:3515–3523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Miyamoto K, Araki K, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool.Cell Stem Cell. 2007;1:1–12.

    Article  CAS  Google Scholar 

  37. 37.

    Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.Cell. 2007;128:325–339..

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mie Uchida or Keita Kirito or Hitoshi Endo or Keiya Ozawa or Norio Komatsu.

About this article

Cite this article

Uchida, M., Kirito, K., Endo, H. et al. Activation of FKHRL1 Plays an Important Role in Protecting Erythroid Cells from Erythropoietin Deprivation-Induced Apoptosis in a Human Erythropoietin-Dependent Leukemia Cell Line, UT-7/EPO. Int J Hematol 86, 315–324 (2007). https://doi.org/10.1532/IJH97.07093

Download citation

Key words

  • Erythropoietin
  • FKHRL1
  • Forkhead
  • p27/Kip1
  • UT-7/EPO