Treatment Options in Advanced Myelodysplastic Syndrome, with Emphasis on Epigenetic Therapy

Abstract

Medical management of myelodysplastic syndrome (MDS) remains challenging, particularly in advanced stages where the risk of developing acute leukemia is very high and the prospect of survival is generally poor. Over the past decade, epigenetic changes such as alterations in DNA methylation and histone modifications have been well described in MDS and are now recognized as targets of therapy (epigenetic therapy). The aim of epigenetic therapy is to reverse epigenetic changes and reactivate important genes, thereby modifying the malignant phenotype and inducing the clearance of the malignant clone via various mechanisms. Epigenetic-modifying agents may also have mechanisms of anticancer action unrelated to gene reactivation. The hypomethylating agents azacitidine and decitabine induce clinically meaningful remissions or improvements in 30% to 60% of patients with this disease, and both agents have been approved in the United States for the treatment of advanced and/or symptomatic MDS. Histone deacetylase inhibitors belong to another class of epigenetic-modifying agents that also have clinical activity in MDS. They are currently being combined with hypomethylating agents. Among other available therapeutic options, allogeneic stem cell transplantation is the only curative approach for MDS but is also characterized by significant morbidities and mortality. We review epigenetic therapy and other therapeutic approaches for patients with advanced MDS.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hanahan D, Weinberg RA. The hallmarks of cancer.Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  2. 2.

    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer.Nat Rev Genet. 2002;3:415–428.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Bird A. DNA methylation patterns and epigenetic memory.Genes Dev. 2002;16:6–21.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Strahl BD, Allis CD. The language of covalent histone modifications.Nature. 2000;403:41–45.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Jenuwein T, Allis CD. Translating the histone code.Science. 2001;293:1074–1080.

    Article  CAS  Google Scholar 

  6. 6.

    Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. JClin Oncol. 2005;23:3971–3993.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies.Oncogene. 2003;22:6489–6496.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood. 1997;89:2079–2088.

    PubMed  CAS  Google Scholar 

  9. 9.

    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation.N Engl J Med. 2003;349:2042–2054.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Robertson KD. DNA methylation, methyltransferases, and cancer.Oncogene. 2001;20:3139–3155.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Li E. Chromatin modification and epigenetic reprogramming in mammalian development.Nat Rev Genet. 2002;3:662–673.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.Nature. 1998;393:386–389.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylationofp15 INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia.Leukemia. 2003;17:1813–1819.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia.Cancer Res. 1999;59:3730–3740.

    PubMed  CAS  Google Scholar 

  15. 15.

    Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies.Blood. 2004;103:1635–1640.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Uchida T, Kinoshita T, Nagai H, et al. Hypermethylation of thep15 INK4B gene in myelodysplastic syndromes.Blood. 1997;90:1403–1409.

    PubMed  CAS  Google Scholar 

  17. 17.

    Voso MT, Scardocci A, Guidi F, et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes.Blood. 2004;103:698–700.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Brakensiek K, Länger F, Schlegelberger B, Kreipe H, Lehmann U. Hypermethylation of the suppressor of cytokine signalling-1(SOCS-1) in myelodysplastic syndrome.Br J Haematol. 2005;130:209–217.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Johan MF, Bowen DT, Frew ME, Goodeve AC, Reilly JT. Aberrant methylation of the negative regulators RASSFIA, SHP-1 and SOCS-1 in myelodysplastic syndromes and acute myeloid leukaemia.Br J Haematol. 2005;129:60–65.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Shen L, Kantarjian H, Saba H, et al. CpG island methylation is a poor prognostic factor in myelodysplastic syndrome patients and is reversed by decitabine therapy: results of a phase III randomized study [abstract]. Blood 2005;106. Abstract 790.

    Google Scholar 

  21. 21.

    Issa JP. Decitabine.Curr Opin Oncol. 2003;15:446–451.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Cihák A, Vesely J. Prolongation of the lag period preceding the enhancement of thymidine and thymidylate kinase activity in regenerating rat liver by 5-azacytidine.Biochem Pharmacol. 1972;21:3257–3265.

    PubMed  Article  Google Scholar 

  23. 23.

    Cih ák A, Vesely J, Skoda J. Azapyrimidine nucleosides: metabolism and inhibitory mechanisms.Adv Enzyme Regul. 1985;24:335–354.

    Article  Google Scholar 

  24. 24.

    Adams RL, Burdon RH. DNA methylation in eukaryotes.CRC Crit Rev Biochem. 1982;13:349–384.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Creusot F, Acs G, Christman JK. Inhibition of DNA methyltrans-ferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. JBiol Chem. 1982;257:2041–2048.

    PubMed  CAS  Google Scholar 

  26. 26.

    Li LH, Olin EJ, Fraser TJ, Bhuyan BK. Phase specificity of 5-azacytidine against mammalian cells in tissue culture.Cancer Res. 1970;30:2770–2775.

    PubMed  CAS  Google Scholar 

  27. 27.

    Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia.Cancer Res. 1970;30:2760–2769.

    PubMed  CAS  Google Scholar 

  28. 28.

    Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.Oncogene. 2002;21:5483–5495.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation.Cell. 1980;20:85–93.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumors.Curr Opin Investig Drugs. 2002;3:627–633.

    PubMed  CAS  Google Scholar 

  31. 31.

    Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia.Pharmacol Ther. 1985;30:277–286.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Rivard GE, Momparler RL, Demers J, et al. Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia.Leuk Res. 1981;5:453–462.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Petti MC, Mandelli F, Zagonel V, et al. Pilot study of 5-aza-2-deoxycytidine (decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results.Leukemia. 1993;7(Suppl 1):36–41.

    Google Scholar 

  34. 34.

    Kantarjian HM, O’Brien SM, Estey E, et al. Decitabine studies in chronic and acute myelogenous leukemia.Leukemia. 1997;11(Suppl 1):S35-S36.

    Google Scholar 

  35. 35.

    Willemze R, Suciu S, Archimbaud E, et al. A randomized phase II study on the effects of 5-aza-2-deoxycytidine combined with either amsacrine or idarubicin in patients with relapsed acute leukemia: an EORTC Leukemia Cooperative Group phase II study (06893).Leukemia. 1997;11(Suppl 1):S24-S27.

    Google Scholar 

  36. 36.

    Zagonel V, Lo Re G, Marotta G, et al. 5-Aza-2-deoxycytidine (decitabine) induces trilineage response in unfavourable myelodysplastic syndromes.Leukemia. 1993;7(Suppl 1):30–35.

    Google Scholar 

  37. 37.

    Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome.Leukemia. 1997;11:1–5.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. JClin Oncol. 2000;18:956–962.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study.Cancer. 2006;106:1794–1803.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of three schedules of low-dose decitabine in higher risk myelodysplastic syndrome and chronic myelomonocytic leukemia.Blood. 2007;109:52–57.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia.Blood. 2006;108:419–425.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Shnider BI, Baig M, Colsky J. A phase I study of 5-azacytidine (NSC-102816). JClin Pharmacol. 1976;16:205–212.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Levi JA, Wiernik PH. A comparative clinical trial of 5-azacytidine and guanazole in previously treated adults with acute nonlympho-cytic leukemia.Cancer. 1976;38:36–41.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Vogler WR, Winton EF, Gordon DS, Raney MR, Go B, Meyer L. A randomized comparison of postremission therapy in acute myelogenous leukemia: a Southeastern Cancer Study Group trial.Blood. 1984;63:1039–1045.

    PubMed  CAS  Google Scholar 

  45. 45.

    Bellet RE, Mastrangelo MJ, Engstrom PF, Strawitz JG, Weiss AJ, Yarbro JW. Clinical trial with subcutaneously administered 5-azacytidine (NSC-102816).Cancer Chemother Rep. 1974;58:217–222.

    PubMed  CAS  Google Scholar 

  46. 46.

    Glover AB, Leyland-Jones BR, Chun HG, Davies B, Hoth DF. Azacitidine: 10 years later.Cancer Treat Rep. 1987;71:737–746.

    PubMed  CAS  Google Scholar 

  47. 47.

    Von Hoff DD, Slavik M, Muggia FM. 5-Azacytidine: a new anti-cancer drug with effectiveness in acute myelogenous leukemia.Ann Intern Med. 1976;85:237–245.

    Article  Google Scholar 

  48. 48.

    Steuber CP, Holbrook T, Camitta B, Land VJ, Sexauer C, Krischer J. Toxicity trials of amsacrine (AMSA) and etopo-side +/- azacitidine (AZ) in childhood acute non-lymphocytic leukemia (ANLL): a pilot study.Invest New Drugs. 1991;9:181–184.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Ley TJ, DeSimone J, Anagnou NP, et al. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ tha-lassemia.N EnglJ Med. 1982;307:1469–1475.

    Article  CAS  Google Scholar 

  50. 50.

    Charache S, Dover G, Smith K, Talbot CC Jr, Moyer M, Boyer S. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with non-random hypomethylation of DNA around the ã-ä-β-globin gene complex.Proc NatlAcad Sci USA. 1983;80:4842–4846.

    Article  CAS  Google Scholar 

  51. 51.

    Silverman LR, Holland JF, Weinberg RS, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes.Leukemia. 1993;7(Suppl 1):21–29.

    Google Scholar 

  52. 52.

    Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the Cancer and Leukemia GroupB. J Clin Oncol. 2002;20:2429–2440.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes.Clin Cancer Res. 2005;11:3604–3608.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Silverman LR, McKenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. JClin Oncol. 2006;24:3895–3903.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Borthakur G, Ravandi-Kashani F, Cortes J, et al. Decitabine induces responses in patients with myelodysplastic syndrome (MDS) after failure of azacitidine therapy [abstract].Blood 2006;108. Abstract 518.

    Article  CAS  Google Scholar 

  56. 56.

    Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment.Blood. 2002;100:2957–2964.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltrans-ferase and histone deacetylase inhibition in the treatment of myeloid neoplasms.Cancer Res. 2006;66:6361–6369.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Oki Y, Jelinek J, Kantarjian H, Issa JP. Hypomethylation induction and molecular response after decitabine therapy in chronic myelomonocytic leukemia (CMML) [abstract].Blood 2006;108. Abstract 2322.

    Google Scholar 

  59. 59.

    Goffin J, Eisenhauer E. DNA methyltransferase inhibitors: state of the art.Ann Oncol. 2002;13:1699–1716.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Wilhelm M, O’Brien S, Rios MB, et al. Phase I study of arabinosyl-5-azacytidine (fazarabine) in adult acute leukemia and chronic myelogenous leukemia in blastic phase.Leuk Lymphoma. 1999;34:511–518.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. JMol Biol. 2002;321:591–599.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Yoo CB, Cheng JC, Jones PA. Zebularine: a new drug for epigenetic therapy.Biochem Soc Trans. 2004;32:910–912.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain.Cell. 1997;90:595–606.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Watamoto K, Towatari M, Ozawa Y, et al. Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation.Oncogene. 2003;22:9176–9184.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H. Acetylation of general transcription factors by histone acetyltrans-ferases.Curr Biol. 1997;7:689–692.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Friedman AD. Leukemogenesis by CBF oncoproteins.Leukemia. 1999;13:1932–1942.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Rodriquez M, Aquino M, Bruno I, De Martino G, Taddei M, Gomez-Paloma L. Chemistry and biology of chromatin remodeling agents: state of art and future perspectives of HDAC inhibitors.Curr Med Chem. 2006;13:1119–1139.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Sowa Y, Orita T, Minamikawa S, et al. Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites.Biochem Biophys Res Commun. 1997;241:142–150.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Kim S, Kang JK, Kim YK, et al. Histone deacetylase inhibitor apicidin induces cyclin E expression through Sp1 sites.Biochem Biophys Res Commun. 2006;342:1168–1173.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Alao JP, Lam EW, Ali S, et al. Histone deacetylase inhibitor trichostatin A represses estrogen receptor β-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines.Clin Cancer Res. 2004;10:8094–8104.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Alao JP, Stavropoulou AV, Lam EW, Coombes RC, Vigushin DM. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells.Mol Cancer. 2006;5:8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Li H, Wu X. Histone deacetylase inhibitor, trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells.Biochem Biophys Res Commun. 2004;324:860–867.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Zhang HS, Gavin M, Dahiya A, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF.Cell. 2000;101:79–89.

    Article  CAS  Google Scholar 

  74. 74.

    Brooks CL, Gu W. Ubiquitination, phosphorylation and acetyla-tion: the molecular basis for p53 regulation.Curr Opin Cell Biol. 2003;15:164–171.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Fuino L, Bali P, Wittmann S, et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B.Mol Cancer Ther. 2003;2:971–984.

    PubMed  CAS  Google Scholar 

  76. 76.

    Nimmanapalli R, Fuino L, Bali P, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells.Cancer. Res. 2003;63:5126–5135.

    PubMed  CAS  Google Scholar 

  77. 77.

    Gaymes TJ, Padua RA, Pla M, et al. Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis?Mol Cancer Res 2006;4:563–573.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Ungerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors.Proc NatlAcad Sci USA. 2005;102:673–678.

    Article  CAS  Google Scholar 

  79. 79.

    Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target?Cancer Cell 2003;4:13–18.

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Insinga A, Minucci S, Pelicci PG. Mechanisms of selective anticancer action of histone deacetylase inhibitors.Cell Cycle. 2005;4:741–743.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Dowdy SC, Jiang S, Zhou XC, et al. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and micro-tubule stabilization in papillary serous endometrial cancer cells.Mol Cancer Ther. 2006;5:2767–2776.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Friedmann I, Atmaca A, Chow KU, Jager E,Weidmann E. Synergistic effects of valproic acid and mitomycin C in adenocarcinoma cell lines and fresh tumor cells of patients with colon cancer. JChemother. 2006;18:415–420.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Kim GD, Choi YH, Dimtchev A, Jeong SJ, Dritschilo A, Jung M. Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. JBiol Chem. 1999;274:31127–31130.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.Nat Genet. 1999;21:103–107.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Bai J, Demirjian A, Sui J, Marasco W, Callery MP Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells.Biochem Biophys Res Commun. 2006;348:1245–1253.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Kuendgen A, Strupp C, Aivado M, et al. Treatment of myelodys-plastic syndromes with valproic acid alone or in combination withall-trans retinoic acid.Blood. 2004;104:1266–1269.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2-deoxycytidine with valproic acid in patients with leukemia.Blood. 2006;108:3271–3279.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Sierra J, Perez WS, Rozman C, et al. Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia.Blood. 2002;100:1997–2004.

    PubMed  CAS  Google Scholar 

  89. 89.

    Solomon SR, Savani BN, Childs R, et al. Improved outcome for peripheral blood stem cell transplantation for advanced primary myelodysplastic syndrome.Biol Blood Marrow Transplant. 2005;11:619–626.

    PubMed  Article  Google Scholar 

  90. 90.

    Kuendgen A, Strupp C, Aivado M, et al. Myelodysplastic syndromes in patients younger than age 50. JClin Oncol. 2006;24:5358–5365.

    PubMed  Article  Google Scholar 

  91. 91.

    Cermak J, Vitek A, Michalova K. Combined stratification of refractory anemia according to both WHO and IPSS criteria has a prognostic impact and improves identification of patients who may benefit from stem cell transplantation.Leuk Res. 2004;28:551–557.

    PubMed  Article  Google Scholar 

  92. 92.

    Maloney DG, Sandmaier BM, Mackinnon S, Shizuru JA. Non-myeloablative tansplantation.Hematology Am Soc Hematol Educ Program 2002:392–421.

    Article  Google Scholar 

  93. 93.

    Martino R, Iacobelli S, Brand R, et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes.Blood. 2006;108:836–846.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    De Witte T, Van Biezen A, Hermans J, et al. Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS: Chronic and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation.Blood. 1997;90:3853–3857.

    PubMed  Google Scholar 

  95. 95.

    Kantarjian H, Beran M, Cortes J, et al. Long-term follow-up results of the combination of topotecan and cytarabine and other intensive chemotherapy regimens in myelodysplastic syndrome.Cancer. 2006;106:1099–1109.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Beran M, Estey E, O’Brien S, et al. Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. JClin Oncol. 1999;17:2819–2830.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Miller KB, Kim K, Morrison FS, et al. The evaluation of low-dose cytarabine in the treatment of myelodysplastic syndromes: a phase-III intergroup study.Ann Hematol. 1992;65:162–168.

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Zwierzina H, Suciu S, Loeffler-Ragg J, et al. Low-dose cytosine ara-binoside (LD-AraC) vs LD-AraC plus granulocyte/macrophage colony stimulating factor vs LD-AraC plus interleukin-3 for myelodysplastic syndrome patients with a high risk of developing acute leukemia: final results of a randomized phase III study (06903) of the EORTC Leukemia Cooperative Group.Leukemia. 2005;19:1929–1933.

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Sekeres MA, List A. Lenalidomide (Revlimid, CC-5013) in myelodysplastic syndromes: is it any good?Curr Hematol Rep 2005;4:182–185.

    PubMed  CAS  Google Scholar 

  100. 100.

    Kurzrock R, Albitar M, Cortes JE, et al. Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. JClin Oncol. 2004;22:1287–1292.

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Kurzrock R, Kantarjian HM, Cortes JE, et al. Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting.Blood. 2003;102:4527–4534.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Faderl S, Gandhi V, O’Brien S, et al. Clofarabine is active in myelodysplastic syndrome (MDS) [abstract].Blood 2006;108. Abstract 2660.

    Article  CAS  Google Scholar 

  103. 103.

    Aguayo A. The role of angiogenesis in the biology and therapy of myelodysplastic syndromes.Curr Hematol Rep. 2004;3:184–191.

    PubMed  Google Scholar 

  104. 104.

    Deeg HJ, Gotlib J, Beckham C, et al. Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study.Leukemia. 2002;16:162–164.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Schiller GJ, Slack J, Hainsworth JD, et al. Phase II multicenter study of arsenic trioxide in patients with myelodysplastic syndromes. JClin Oncol. 2006;24:2456–2464.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiro Oki or Jean-Pierre J. Issa.

About this article

Cite this article

Oki, Y., Issa, J.J. Treatment Options in Advanced Myelodysplastic Syndrome, with Emphasis on Epigenetic Therapy. Int J Hematol 86, 306–314 (2007). https://doi.org/10.1532/IJH97.07034

Download citation

Key words

  • Myelodysplastic syndrome
  • Epigenetic therapy
  • DNA methylation
  • Hypomethylation
  • Histone deacetylase inhibitors