Skip to main content
Log in

The Role of Helicobacter pylori CagA in Gastric Carcinogenesis

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Gastric carcinoma is the second most common cause of cancer-related deaths in the world, accounting for more than 400,000 deaths each year. Infection with cagA-positive Helicobacter pylori plays a pivotal role in the development of gastric adenocarcinoma. The cagA gene product CagA is directly delivered into gastric epithelial cells via the type IV secretion system. Following membrane localization and subsequent tyrosine phosphorylation by Src family kinases, CagA interacts with a variety of host cell proteins that are involved in the regulation of cell growth and motility in both phosphorylation-dependent and -independent manners. Of special interest is the interaction of CagA with the SH2 domain-containing tyrosine phosphatase SHP-2, gain-of-function mutations of which have recently been found in human malignancies. CagA binds to and activates SHP-2 in a tyrosine phosphorylation-dependent manner, thereby provoking abnormal activation of Erk MAP kinase while inducing elevated cell motility. Perturbation of SHP-2 and other signaling molecules by H pylori CagA may predispose cells to accumulate multiple genetic and epigenetic changes that promote multistep gastric carcinogenesis. Intriguingly, the structural polymorphism of CagA accounts for the differences in pathophysiological activity of individual CagA proteins, raising the possibility of subclassification of H pylori strains into benign and malignant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000: the global picture. Eur J Cancer. 2001;37:S4-S66.

    Article  PubMed  Google Scholar 

  2. Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–405.

    Article  PubMed  CAS  Google Scholar 

  3. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 1991; 325:1132–1136.

    Article  PubMed  CAS  Google Scholar 

  4. Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter pylori and the risk of gastric carcinoma. N Engl J Med. 1991;325:1127–1131.

    Article  PubMed  CAS  Google Scholar 

  5. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–789.

    Article  PubMed  CAS  Google Scholar 

  6. Covacci A, Censini S, Bugnoli M, et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A. 1993;90:5791–5795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tummuru MK, Cover TL, Blaser MJ. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun. 1993;61:1799–1809.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Censini S, Lange C, Xiang Z, et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996;93:14648–14653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Akopyants NS, Clifton SW, Kersulyte D, et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol. 1998;28:37–53.

    Article  PubMed  CAS  Google Scholar 

  10. Blaser MJ, Perez-Perez GI, Kleanthous H, et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 1995;55:2111–2115.

    PubMed  CAS  Google Scholar 

  11. Kuipers EJ, Perez-Perez GI, Meuwissen SG, Blaser MJ. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst. 1995;87:1777–1780.

    Article  PubMed  CAS  Google Scholar 

  12. Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997;40:297–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A. 1999;96:14559–14564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Asahi M, Azuma T, Ito S, et al. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med. 2000;191:593–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Backert S, Ziska E, Brinkmann V, et al. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol. 2000;2:155–164.

    Article  PubMed  CAS  Google Scholar 

  16. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  17. Stein M, Rappuoli R, Covacci A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A. 2000;97:1263–1268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem. 2002;277:6775–6778.

    Article  PubMed  CAS  Google Scholar 

  19. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol. 2002;43:971–980.

    Article  PubMed  CAS  Google Scholar 

  20. Higashi H, Tsutsumi R, Muto S, et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295:683–686.

    Article  CAS  PubMed  Google Scholar 

  21. Higashi H, Tsutsumi R, Fujita A, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A. 2002;99:14428–14433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Higashi H,Yokoyama K, Fujii Y, et al. EPIYA motif is a membrane targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem. 2005;280:23130–23137.

    Article  PubMed  CAS  Google Scholar 

  23. Yamazaki S, Yamakawa A, Ito Y, et al. The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J Infect Dis. 2003;187:334–337.

    Article  PubMed  CAS  Google Scholar 

  24. Hof P, Pluskey S, Dhe-Paganon S, Ech MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92:441–450.

    Article  PubMed  CAS  Google Scholar 

  25. Naito M, Yamazaki T, Tsutsumi R, et al. Influence of EPIYA- repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology. 2006;130:1181–1190.

    Article  PubMed  CAS  Google Scholar 

  26. Neel BG, Gu H, Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–293.

    Article  PubMed  CAS  Google Scholar 

  27. Higashi H, Nakaya A, Tsutsumi R, et al. Helicobacter pylori CagA provokes Ras-independent morphogenetic response through targeting SHP-2. J Biol Chem. 2004;279:17205–17216.

    Article  PubMed  CAS  Google Scholar 

  28. Higuchi M, Tsutsumi R, Higashi H, Hatakeyama M. Conditional gene silencing utilizing the lac repressor reveals a role of SHP-2 in cagA-positive Helicobacter pylori pathogenicity. Cancer Sci. 2004;95:442–447.

    Article  PubMed  CAS  Google Scholar 

  29. Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M. FAK is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol. 2006;26:261–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Roovers K, Assoian RK. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays. 2000;22:818–826.

    Article  PubMed  CAS  Google Scholar 

  31. Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M. Attenuation of Helicobacter pylori CagA-SHP-2 signaling by interaction between CagA and C-terminal Src Kinase. J Biol Chem. 2003;278:3664–3670.

    Article  PubMed  CAS  Google Scholar 

  32. Hatakeyama M. Oncogenic mechanisms of Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4:688–694.

    Article  PubMed  CAS  Google Scholar 

  33. Hatakeyama M. Helicobacter pylori CagA: a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect. 2003;5:143–150.

    Article  PubMed  CAS  Google Scholar 

  34. Mimuro H, Suzuki T,Tanaka J,Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell. 2002;10:745–755.

    Article  PubMed  CAS  Google Scholar 

  35. Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 2003;161:249–255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 2003;300:1430–1434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bagnoli F, Buti L,Tompkins L, Covacci A, Amieva MR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A. 2005;102:16339–16344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Franco AT, Israel DA, Washington MK, et al. Activation of β- catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A. 2005;102:10646–10651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hirata Y, Maeda S, Mitsuno Y, et al. Helicobacter pylori CagA protein activates serum response element-driven transcription independently of tyrosine phosphorylation. Gastroenterology. 2002;123:1962–1971.

    Article  CAS  PubMed  Google Scholar 

  40. Brandt S, Kwok T, Hartig R, Konig W, Backert S. NF-κB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A. 2005; 102:9300–9305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yokoyama K, Higashi H, Ishikawa S, et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci U S A. 2005;102:9661–9666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.

    Article  PubMed  CAS  Google Scholar 

  43. Bentires-Alj M, Paez JG, David FS, et al. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64:8816–8820.

    Article  PubMed  CAS  Google Scholar 

  44. Correa P. Human gastric pathogenesis: a multistep and multifactorial process. First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735- 6740.

    PubMed  CAS  Google Scholar 

  45. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–1571.

    Article  CAS  PubMed  Google Scholar 

  46. Azuma T, Yamazaki S, Yamakawa A, et al. Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. J Infect Dis. 2004;189:820–827.

    Article  PubMed  CAS  Google Scholar 

  47. Azuma T, Ohtani M, Yamazaki Y, Higashi H, Hatakeyama M. Meta-analysis of the relationship between CagA seropositivity and gastric cancer. Gastroenterology. 2004;126:1926–1927.

    Article  PubMed  Google Scholar 

  48. Argent RH, Kidd M, Owen RJ,Thomas RJ, Limb MC,Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127:514–523.

    Article  PubMed  CAS  Google Scholar 

  49. Goto Y, Ando T, Yamamoto K, et al. Association between serum pepsinogens and polymorphisms of PTPN11 encoding SHP-2 among Helicobacter pylori seropositive Japanese. Int J Cancer. 2006;118:203–208.

    Article  PubMed  CAS  Google Scholar 

  50. Wong BC, Lam SK, Wong WM, et al. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA. 2004;291:187–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hatakeyama.

About this article

Cite this article

Hatakeyama, M. The Role of Helicobacter pylori CagA in Gastric Carcinogenesis. Int J Hematol 84, 301–308 (2006). https://doi.org/10.1532/IJH97.06166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06166

Key words

Navigation