Advertisement

International Journal of Hematology

, Volume 84, Issue 3, pp 193–198 | Cite as

Phagocytosis-Coupled Activation of the Superoxide-Producing Phagocyte Oxidase, a Member of the NADPH Oxidase (Nox) Family

  • Reiko Minakami
  • Hideki Sumimoto
Progress in hematology

Abstract

The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays a crucial role in host defense by neutrophils and macrophages. When cells ingest invading microbes, this enzyme becomes activated to reduce molecular oxygen to superoxide, a precursor of microbicidal oxidants, in the phagosome. The catalytic core of the oxidase is membrane-bound cytochrome b558, which comprises gp91 phox and p22 phox . gp91 phox belongs to the NADPH oxidase (Nox) family, which contains the entire electron-transporting apparatus from NADPH to molecular oxygen. In resting neutrophils, cytochrome b558 is mainly present in the membrane of the specific granule, an intracellular component, and is targeted to the phagosomal membrane during phagocytosis. Activation of gp91 phox involves the integrated function of cytoplasmic proteins such as p47 phox , p67 phox , p40 phox , and the small guanosine triphosphatase Rac; these proteins translocate to the phagosomal membrane to interact with cytochrome b558, leading to superoxide production. Here we describe a current molecular model for phagocytosis-coupled activation of the NADPH oxidase.

Key words

NADPH oxidase Nox Neutrophil Phagocytosis Phagosome Superoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004;122:277–291.CrossRefGoogle Scholar
  2. 2.
    Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004;76:760–781.CrossRefGoogle Scholar
  3. 3.
    Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–686.CrossRefGoogle Scholar
  5. 5.
    Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–189.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem. 2004;279:51715–51718.CrossRefGoogle Scholar
  7. 7.
    Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A. 2000;97:4654–4659.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nimmerjahn F, Ravetch JV. Fcγ receptors: old friends and new family members. Immunity. 2006;24:19–28.CrossRefGoogle Scholar
  9. 9.
    Garcia-Garcia E, Rosales C. Signal transduction during Fc receptor-mediated phagocytosis. J Leukoc Biol. 2002;72:1092–1108.Google Scholar
  10. 10.
    Warren LL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect. 2003;5:1299–1306.CrossRefGoogle Scholar
  11. 11.
    Vieira OV, Botelho RJ, Rameh L, et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001;155:19–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 2005;15:163–171.CrossRefGoogle Scholar
  13. 13.
    Janmey PA, Lindberg U. Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol. 2004;5:658–666.CrossRefGoogle Scholar
  14. 14.
    Castellano F, Montcourrier P, Guillemot JC, et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr Biol. 1999;9:351–360.CrossRefGoogle Scholar
  15. 15.
    Castellano F, Montcourrier P, Chavrier P. Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci. 2000;113:2955–2961.Google Scholar
  16. 16.
    Hoppe AD, Swanson JA. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell. 2004;15: 3509–3519.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brumell JH, Grinstein S. Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol. 2003;5:287–297.CrossRefPubMedGoogle Scholar
  18. 18.
    Coppolino MG, Dierckman R, Loijens J, et al. Inhibition of phos-phatidy linositol-4-phosphate 5-kinase Ia impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem. 2002;277: 43849–43857.CrossRefPubMedGoogle Scholar
  19. 19.
    Ueyama T, Lennartz MR, Noda Y, et al. Superoxide production at phagosomal cup/phagosome through βI protein kinase C during FcγR-mediated phagocytosis in microglia. J Immunol. 2004;173: 4582–4589.CrossRefPubMedGoogle Scholar
  20. 20.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173–182.CrossRefGoogle Scholar
  21. 21.
    Sumimoto H, Kage Y, Nunoi H, et al. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994;91:5345–5349.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Leto TL, Adams AG, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to prolinerich targets. Proc Natl Acad Sci U S A. 1994;91:10650–10654.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ago T, Nunoi H, Ito T, Sumimoto H. Mechanism for phosphorylationinduced activation of the phagocyte NADPH oxidase protein p47phox: triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47phox, thereby activating the oxidase. J Biol Chem. 1999;274:33644–33653.CrossRefGoogle Scholar
  24. 24.
    Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113:343–355.CrossRefGoogle Scholar
  25. 25.
    Yuzawa S, Ogura K, Horiuchi M, et al. Solution structure of the tandem SH3 domains of p47phox in an autoinhibited form. J Biol Chem. 2004;279:29752–29760.CrossRefGoogle Scholar
  26. 26.
    Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D. Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol. 2001;8:526–530.CrossRefGoogle Scholar
  27. 27.
    Ago T, Kuribayashi F, Hiroaki H, et al. Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phos-phoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A. 2003;100:4474–4479.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Karathanassis D, Stahelin RV, Bravo J, et al. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002;21:5057–5068.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    El Benna J, Faust LP, Babior BM. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation: phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem. 1994;269:23431–23436.Google Scholar
  30. 30.
    Nobuhisa I,Takeya R, Ogura K, et al. Activation of the superoxide- producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent α-helix of p22phox. Biochem J. 2006;396:183–192.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ogura K, Nobuhisa I, Yuzawa S, et al. NMR solution structure of the tandem Src homology 3 domains of p47phox complexed with a p22phox- derived proline-rich peptide. J Biol Chem. 2006;281:3660–3668.CrossRefGoogle Scholar
  32. 32.
    Shiose A, Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem. 2000;275:13793–13801.CrossRefGoogle Scholar
  33. 33.
    Kami K, Takeya R, Sumimoto H, Kohda D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J. 2002;21:4268–4276.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Massenet C, Chenavas S, Cohen-Addad C, et al. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox: structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem. 2005;280:13752–13761.CrossRefGoogle Scholar
  35. 35.
    Mizuki K, Takeya R, Kuribayashi F, et al. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys. 2005;444:185–194.CrossRefGoogle Scholar
  36. 36.
    Ito T, Matsui Y, Ago T, Ota K, Sumimoto H. Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO J. 2001;20:3938–3946.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuribayashi F, Nunoi H, Wakamatsu K et al. The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J. 2002;21:6312–6320.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bravo J, Karathanassis D, Pacold CM, et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol Cell. 2001;8:829–839.CrossRefGoogle Scholar
  39. 39.
    Ueyama T, Eto M, Kami K, et al. Isoform-specific membrane targeting mechanism of Rac during FcγR-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol. 2005;175:2381–2390.CrossRefPubMedGoogle Scholar
  40. 40.
    Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H. Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem. 1999;274:25051–25060.CrossRefGoogle Scholar
  41. 41.
    Miyano K, Ueno N, Takeya R, Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem. 2006;281:21857–21868.CrossRefGoogle Scholar
  42. 42.
    Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem. 2002;277:18605–18610.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  1. 1.Medical Institute of BioregulationKyushu UniversityFukuoka
  2. 2.Department of Health SciencesSchool of Medicine, Kyushu UniversityFukuoka
  3. 3.CRESTJapan Science and Technology AgencySaitamaJapan

Personalised recommendations