International Journal of Hematology

, Volume 83, Issue 5, pp 385–390 | Cite as

Adoptive Immunotherapy for Hodgkin’s Lymphoma

  • Alana A. Kennedy-Nasser
  • Catherine M. Bollard
  • Cliona M. Rooney
Progress in Hematology

Abstract

Adoptive transfer of tumor-specific T-cells is an attractive strategy for the treatment of patients with refractory or relapsed Hodgkin’s lymphoma. However, Hodgkin’s lymphomas possess a range of tumor-evasion mechanisms, which must be overcome before the full potential of immunotherapies can be achieved. In this article, we discuss the promise of Epstein-Barr virus-specific cytotoxic T-lymphocytes, the roles of cytokines, and other strategies for overcoming the immune-evasion mechanisms in Hodgkin’s lymphoma.

Key words

Hodgkin’s lymphoma Immunotherapy Cytotoxic T-lymphocyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poppema S, Potters M, Visser L, van den Berg AM. Immune escape mechanisms in Hodgkin’s disease. Ann Oncol. 1998;9(suppl 5):S21-S24.CrossRefPubMedGoogle Scholar
  2. 2.
    Robert NJ, Schneiderman H. Hodgkin’s disease and the acquired immunodeficiency syndrome. Ann Intern Med. 1984;101:142–143.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderlini P, Saliba R, Acholonu S, et al. Reduced-intensity allogeneic stem cell transplantation in relapsed and refractory Hodgkin’s disease: low transplant-related mortality and impact of intensity of conditioning regimen. Bone Marrow Transplant. 2005;35:943–951.CrossRefPubMedGoogle Scholar
  4. 4.
    Fuks Z, Strober S, Kaplan HS. Interaction between serum factors and T lymphocytes in Hodgkin’s disease: use as a diagnostic test. N Engl J Med. 1976;295:1273–1278.CrossRefPubMedGoogle Scholar
  5. 5.
    Estevez ME, Ballart IJ, de Macedo MP, Magnasco H, Nicastro MA, Sen L. Dysfunction of monocytes in Hodgkin’s disease by excessive production of PGE-2 in long-term remission patients. Cancer. 1988;62:2128–2133.CrossRefPubMedGoogle Scholar
  6. 6.
    Peniket AJ, Ruiz de Elvira MC, Taghipour G, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant. 2003;31:667–678.CrossRefPubMedGoogle Scholar
  7. 7.
    Herbert KE, Spencer A, Grigg A, Ryan G, McCormack C, Prince HM. Graft-versus-lymphoma effect in refractory cutaneous T-cell lymphoma after reduced-intensity HLA-matched sibling allogeneic stem cell transplantation. Bone Marrow Transplant. 2004;34:521–525.CrossRefPubMedGoogle Scholar
  8. 8.
    Peggs KS, Hunter A, Chopra R, et al. Clinical evidence of a graftversus-Hodgkin’s-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet. 2005;365:1934–1941.CrossRefPubMedGoogle Scholar
  9. 9.
    Milpied N, Fielding AK, Pearce RM, Ernst P, Goldstone AH. Allogeneic bone marrow transplant is not better than autologous transplant for patients with relapsed Hodgkin’s disease. European Group for Blood and Bone Marrow Transplantation. J Clin Oncol. 1996;14:1291–1296.CrossRefPubMedGoogle Scholar
  10. 10.
    Gajewski JL, Phillips GL, Sobocinski KA, et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin’s disease. J Clin Oncol. 1996;14:572–578.CrossRefPubMedGoogle Scholar
  11. 11.
    Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol. 1994;153:1687–1696.PubMedGoogle Scholar
  12. 12.
    Schmidt-Wolf IG, Lefterova P, Mehta BA, et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993;21:1673–1679.PubMedGoogle Scholar
  13. 13.
    Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2005;11:181–187.CrossRefPubMedGoogle Scholar
  14. 14.
    Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–382.CrossRefPubMedGoogle Scholar
  15. 15.
    Hjalgrim H, Askling J, Rostgaard K, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349:1324–1332.CrossRefPubMedGoogle Scholar
  16. 16.
    Voo KS, Peng G, Guo Z, et al. Functional characterization of EBV-encoded nuclear antigen 1-specific CD4+ helper and regulatory T cells elicited by in vitro peptide stimulation. Cancer Res. 2005;65:1577–1586.CrossRefPubMedGoogle Scholar
  17. 17.
    Voo KS, Fu T, Wang HY, et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med. 2004;199:459–470.CrossRefPubMedGoogle Scholar
  18. 18.
    Khanim F, Yao QY, Niedobitek G, Sihota S, Rickinson AB, Young LS. Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood. 1996;88:3491–3501.PubMedGoogle Scholar
  19. 19.
    Trivedi P, Hu LF, Chen F, et al. Epstein-Barr virus (EBV)- encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. Eur J Cancer. 1994;30A:84–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Murray PG, Constandinou CM, Crocker J, Young LS, Ambinder RF. Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin’s disease. Blood. 1998;92:2477–2483.PubMedGoogle Scholar
  21. 21.
    Lee SP, Thomas WA, Murray RJ, et al. HLA A2. 1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol. 1993;67:7428–7435.PubMedGoogle Scholar
  22. 22.
    Busson P, Edwards RH, Tursz T, Raab-Traub N. Sequence polymorphism in the Epstein-Barr virus latent membrane protein (LMP)-2 gene. J Gen Virol. 1995;76(pt 1):139–145.CrossRefPubMedGoogle Scholar
  23. 23.
    Sing AP, Ambinder RF, Hong DJ, et al. Isolation of Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes that lyse Reed- Sternberg cells: implications for immune-mediated therapy of EBV+ Hodgkin’s disease. Blood. 1997;89:1978–1986.PubMedGoogle Scholar
  24. 24.
    Straathof KC, Leen AM, Buza EL, et al. Characterization of latent membrane protein 2 specificity in CTL lines from patients with EBV-positive nasopharyngeal carcinoma and lymphoma. J Immunol. 2005;175:4137–4147.CrossRefPubMedGoogle Scholar
  25. 25.
    Bollard CM, Aguilar L, Straathof KC, et al. Cytotoxic T lympho- cyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J Exp Med. 2004;200:1623–1633.CrossRefPubMedGoogle Scholar
  26. 26.
    Bollard CM, Straathof KC, Huls MH, et al. The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J Immunother. 2004;27:317–327.CrossRefPubMedGoogle Scholar
  27. 27.
    Bollard C, Gottschalk S, Buza E, et al. The use of autologous LMP2-specific cytotoxic T lymphocytes for the treatment of relapsed EBV +ve Hodgkin disease and non-Hodgkin lymphoma: molecular therapy [abstract]. Biol Blood Marrow Transplant. 2005;11:18.CrossRefGoogle Scholar
  28. 28.
    Marshall NA, Christie LE, Munro LR, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103:1755–1762.CrossRefPubMedGoogle Scholar
  29. 29.
    Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol. 2003;3:801–812.CrossRefPubMedGoogle Scholar
  30. 30.
    van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells: a possible explanation for the characteristic T-cell infiltration Hodgkin’s lymphoma. Am J Pathol. 1999;154:1685–1691.CrossRefPubMedGoogle Scholar
  31. 31.
    Massague J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.CrossRefPubMedGoogle Scholar
  32. 32.
    Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001;7:1118–1122.CrossRefPubMedGoogle Scholar
  33. 33.
    Fahlen L, Read S, Gorelik L, et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:737–746.CrossRefPubMedGoogle Scholar
  34. 34.
    Bollard CM, Rossig C, Calonge MJ, et al. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–3187.CrossRefPubMedGoogle Scholar
  35. 35.
    Shevach EM. Regulatory T cells in autoimmunity. Annu Rev Immunol. 2000;18:423–449.CrossRefPubMedGoogle Scholar
  36. 36.
    Levings MK, Roncarolo MG T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. J Allergy Clin Immunol. 2000;106(1 Pt 2):S109-S112.CrossRefPubMedGoogle Scholar
  37. 37.
    Weiner HL. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207–214.CrossRefPubMedGoogle Scholar
  38. 38.
    Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J Exp Med. 2002;196:237–246.CrossRefPubMedGoogle Scholar
  39. 39.
    Roncarolo MG, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol. 2000;12:676–683.CrossRefPubMedGoogle Scholar
  40. 40.
    Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101:455–458.CrossRefPubMedGoogle Scholar
  41. 41.
    Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9:606–612.PubMedGoogle Scholar
  42. 42.
    McHugh RS, Shevach EM. The role of suppressor T cells in regulation of immune responses. J Allergy Clin Immunol. 2002;110:693–702.CrossRefPubMedGoogle Scholar
  43. 43.
    Tanchot C, Rosado MM, Agenes F, Freitas AA, Rocha B. Lymphocyte homeostasis. Semin Immunol. 1997;9:331–337.CrossRefPubMedGoogle Scholar
  44. 44.
    Rosenberg SA, Anderson WF, Asher AL, et al. Immunization of cancer patients using autologous cancer cells modified by insertion of the gene for tumor necrosis factor. Hum Gene Ther. 1992;3:57–73.CrossRefGoogle Scholar
  45. 45.
    Krance RA, Kuehnle I, Rill DR, et al. Hematopoietic and immunomodulatory effects of lytic CD45 monoclonal antibodies in patients with hematologic malignancy. Biol Blood Marrow Transplant. 2003;9:273–281.CrossRefPubMedGoogle Scholar
  46. 46.
    Wulf GG, Luo KL, Goodell MA, Brenner MK. Anti-CD45-mediated cytoreduction to facilitate allogeneic stem cell transplantation. Blood. 2003;101:2434–2439.CrossRefPubMedGoogle Scholar
  47. 47.
    Poppema S, van den Berg A. Interaction between host T cells and Reed-Sternberg cells in Hodgkin lymphomas. Semin Cancer Biol. 2000;10:345–350.CrossRefPubMedGoogle Scholar
  48. 48.
    Peh SC, Kim LH, Poppema S. TARC, a CC chemokine, is frequently expressed in classic Hodgkin’s lymphoma but not in NLP Hodgkin’s lymphoma, T-cell-rich B-cell lymphoma, and most cases of anaplastic large cell lymphoma. Am J Surg Pathol. 2001;25:925–929.CrossRefPubMedGoogle Scholar
  49. 49.
    Chapman AL, Rickinson AB, Thomas WA, Jarrett RF, Crocker J, Lee SP. Epstein-Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin’s disease patients: implications for a T-cell-based therapy. Cancer Res. 2001;61:6219–6226.PubMedGoogle Scholar
  50. 50.
    Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–845.CrossRefPubMedGoogle Scholar
  51. 51.
    Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A. 1990;87:6808–6812.CrossRefPubMedGoogle Scholar
  52. 52.
    Wagner HJ, Bollard CM, Vigouroux S, et al. A strategy for treatment of Epstein-Barr virus-positive Hodgkin’s disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Ther. 2004;11:81–91.CrossRefPubMedGoogle Scholar
  53. 53.
    Zurawski G, de Vries JE. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994;15:19–26.CrossRefPubMedGoogle Scholar
  54. 54.
    de Waal Malefyt R, Abrams JS, Zurawski SM, et al. Differential regulation of IL-13 and IL-4 production by human CD8+ and CD4+ Th0, Th1 and Th2 T cell clones and EBV-transformed B cells. Int Immunol. 1995;7:1405–1416.CrossRefPubMedGoogle Scholar
  55. 55.
    Kindler V, Matthes T, Jeannin P, Zubler RH. Interleukin-2 secre- tion by human B lymphocytes occurs as a late event and requires additional stimulation after CD40 cross-linking. Eur J Immunol. 1995;25:1239–1243.CrossRefPubMedGoogle Scholar
  56. 56.
    Kapp U, Yeh WC, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med. 1999;189:1939–1946.CrossRefPubMedGoogle Scholar
  57. 57.
    Skinnider BF, Kapp U, Mak TW Interleukin 13: a growth factor in Hodgkin lymphoma. Int Arch Allergy Immunol. 2001;126:267–276.CrossRefPubMedGoogle Scholar
  58. 58.
    Trieu Y, Wen XY, Skinnider BF, et al. Soluble interleukin-13Rα2 decoy receptor inhibits Hodgkin’s lymphoma growth in vitro and in vivo. Cancer Res. 2004;64:3271–3275.CrossRefPubMedGoogle Scholar
  59. 59.
    Ohshima K, Muta K, Nakashima M, et al. Expression of human tumor-associated antigen RCAS1 in Reed-Sternberg cells in association with Epstein-Barr virus infection: a potential mechanism of immune evasion. Int J Cancer. 2001;93:91–96.CrossRefPubMedGoogle Scholar
  60. 60.
    Dotti G, Savoldo B, Pule M, et al. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood. 2005;105:4677–4684.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  • Alana A. Kennedy-Nasser
    • 1
  • Catherine M. Bollard
    • 1
  • Cliona M. Rooney
    • 1
  1. 1.Center for Cell and Gene TherapyBaylor College of Medicine, The Methodist Hospital and Texas Children’s HospitalHoustonUSA

Personalised recommendations