Advertisement

International Journal of Hematology

, Volume 84, Issue 4, pp 319–327 | Cite as

Oncostatin M Maintains the Hematopoietic Microenvironment and Retains Hematopoietic Progenitors in the Bone Marrow

  • Ken-ichi Minehata
  • Masaki Takeuchi
  • Yoko Hirabayashi
  • Tohru Inoue
  • Peter J. Donovan
  • Minoru Tanaka
  • Atsushi Miyajima
Article

Abstract

Bone marrow (BM) functions as the primary hematopoietic tissue throughout adult life by providing a microenvironment for the proliferation, differentiation, and retention of hematopoietic stem cells and progenitors. We describe novel roles for oncostatin M (OSM) in the BM hematopoietic microenvironment. Hematopoietic progenitor activity in OSM-deficient mice was reduced in BM but elevated in the spleen and peripheral blood. The level of circulating granulocyte colony-stimulating factor (G-CSF) was increased, whereas that of stromal cell-derived factor 1 (SDF-1) was decreased in OSM-deficient mice. Moreover, the ability of OSM-deficient BM stromal cells to support hematopoiesis in vitro was significantly reduced. These results indicate that OSM plays a unique role in hematopoiesis by maintaining the proper microenvironment for BM hematopoiesis; it also retains hematopoietic progenitors in BM by regulating G-CSF and SDF-1 levels.

Key words

Oncostatin M Hematopoiesis Microenvironment Bone marrow Granulocyte colony-stimulating factor Stromal cell-derived factor 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delassus S, Cumano A. Circulation of hematopoietic progenitors in the mouse embryo. Immunity. 1996;4:97–106.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–841.CrossRefPubMedGoogle Scholar
  3. 3.
    Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–846.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Avecilla ST, Hattori K, Heissig B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity. 2003;19:257–267.CrossRefPubMedGoogle Scholar
  6. 6.
    Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood. 1976;47:1031–1039.PubMedGoogle Scholar
  7. 7.
    To LB, Shepperd KM, Haylock DN, et al. Single high doses of cyclophosphamide enable the collection of high numbers of hemopoietic stem cells from the peripheral blood. Exp Hematol. 1990;18:442–447.PubMedGoogle Scholar
  8. 8.
    Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 1988;72:2074–2081.PubMedGoogle Scholar
  9. 9.
    Hoglund M, Smedmyr B, Simonsson B, Totterman T, Bengtsson M. Dose-dependent mobilisation of haematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant. 1996;18:19–27.PubMedGoogle Scholar
  10. 10.
    Hattori K, Dias S, Heissig B, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–1014.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97:3354–3360.CrossRefPubMedGoogle Scholar
  12. 12.
    Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–637.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–694.CrossRefPubMedGoogle Scholar
  14. 14.
    Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261:600–603.CrossRefPubMedGoogle Scholar
  15. 15.
    Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91:2305–2309.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997;185:111–120.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A. 1997;94:1925–1930.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833–835.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kawabata K, Ujikawa M, Egawa T, et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci U S A. 1999;96:5663–5667.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10:463–471.CrossRefPubMedGoogle Scholar
  21. 21.
    Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102:2728–2730.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown TJ, Lioubin MN, Marquardt H. Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes: synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells. J Immunol. 1987;139:2977–2983.PubMedGoogle Scholar
  23. 23.
    Malik N, Kallestad JC, Gunderson NL, et al. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M. Mol Cell Biol. 1989;9:2847–2853.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bruce AG, Hoggatt IH, Rose TM. Oncostatin M is a differentiation factor for myeloid leukemia cells. J Immunol. 1992;149:1271–1275.PubMedGoogle Scholar
  25. 25.
    Miles SA, Martinez-Maza O, Rezai A, et al. Oncostatin M as a potent mitogen for AIDS-Kaposi’s sarcoma-derived cells. Science. 1992;255:1432–1434.CrossRefPubMedGoogle Scholar
  26. 26.
    Wallace PM, MacMaster JF, Rillema JR, Peng J, Burstein SA, Shoyab M. Thrombocytopoietic properties of oncostatin M. Blood. 1995;86:1310–1315.PubMedGoogle Scholar
  27. 27.
    Mukouyama Y, Hara T, Xu M, et al. In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonad-mesonephros region. Immunity. 1998;8:105–114.CrossRefPubMedGoogle Scholar
  28. 28.
    Takeuchi M, Sekiguchi T, Hara T, Kinoshita T, Miyajima A. Cultivation of aorta-gonad-mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow. Blood. 2002;99:1190–1196.CrossRefPubMedGoogle Scholar
  29. 29.
    Kamiya A, Kinoshita T, Ito Y, et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J. 1999;18:2127–2136.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kinoshita T, Sekiguchi T, Xu MJ, et al. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc Natl Acad Sci U S A. 1999;96:7265–7270.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Broxmeyer HE, Bruns HA, Zhang S, et al. Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity. 2002;16:815–825.CrossRefPubMedGoogle Scholar
  32. 32.
    Schwaller J, Parganas E, Wang D, et al. Stat5 is essential for the myelo-and lymphoproliferative disease induced by TEL/JAK2. Mol Cell. 2000;6:693–704.CrossRefPubMedGoogle Scholar
  33. 33.
    Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood. 2003;102:3154–3162.CrossRefPubMedGoogle Scholar
  34. 34.
    Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–319.CrossRefPubMedGoogle Scholar
  35. 35.
    Miyajima A, Schreurs J, Otsu K, Kondo A, Arai K, Maeda S. Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene. 1987;58:273–281.CrossRefPubMedGoogle Scholar
  36. 36.
    Yoshimura A, Ichihara M, Kinjyo I, et al. Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. EMBO J. 1996;15:1055–1063.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Harris RA, Hogarth PM, Wadeson LJ, Collins P, McKenzie IF, Penington DG. An antigenic difference between cells forming early and late haematopoietic spleen colonies (CFU-S). Nature. 1984;307:638–641.CrossRefPubMedGoogle Scholar
  38. 38.
    Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M in hematopoietic organs. Dev Dyn. 2002;225:327–331.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106:3020–3027.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–421.CrossRefPubMedGoogle Scholar
  41. 41.
    Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677–1682.CrossRefPubMedGoogle Scholar
  42. 42.
    Jay PR, Centrella M, Lorenzo J, Bruce AG, Horowitz MC. Oncostatin-M: a new bone active cytokine that activates osteoblasts and inhibits bone resorption. Endocrinology. 1996;137:1151–1158.CrossRefPubMedGoogle Scholar
  43. 43.
    Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003;102:1249–1253.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  • Ken-ichi Minehata
    • 1
  • Masaki Takeuchi
    • 1
  • Yoko Hirabayashi
    • 2
  • Tohru Inoue
    • 2
  • Peter J. Donovan
    • 3
  • Minoru Tanaka
    • 1
    • 4
  • Atsushi Miyajima
    • 1
    • 4
  1. 1.Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
  2. 2.National Institute of Health SciencesTokyoJapan
  3. 3.Stem Cell Research CenterUniversity of California IrvineIrvineUSA
  4. 4.Core Research for Evolutionary Science and Technology (CREST) of Japan Science and Technology CorporationKawaguchiJapan

Personalised recommendations