Advertisement

International Journal of Hematology

, Volume 83, Issue 3, pp 195–200 | Cite as

An Overview of Cytidine Deaminases

  • Naveenan Navaratnam
  • Rizwan Sarwar
Progress in Hematology

Abstract

Enzymes that deaminate cytidine to uridine play an important role in a variety of pathways from bacteria to man.Ancestral members of this family were able to deaminate cytidine only in a mononucleotide or nucleoside context. Recently, a family of enzymes has been discovered with the ability to deaminate cytidines on RNA or DNA. The first member of this new family is APOBEC1, which deaminates apolipoprotein B messenger RNA to generate a premature stop codon. APOBEC1 has the conserved active site motif found in Escherichia coli cytidine deaminase. In addition, APOBEC1 has a unique motif containing 2 phenylalanine residues and an insert of 4 amino acid residues across the active site motif. This motif is present in APOBEC family members including activation-induced cytidine deaminase (AID), APOBEC2, and APOBEC3A through APOBEC3G. AID is essential for initiating class-switch recombination, somatic hypermutation, and gene conversion. The APOBEC3 family is unique to primates. APOBEC3G is able to protect cells from human immunodeficiency virus and other viral infections.This function is not unique to APOBEC3G; other APOBEC3 family members also have this ability. Overexpression of enzymes in this family can cause cancer, suggesting that the genes for the APOBEC family of proteins are proto-oncogenes. Recent advances in the understanding of the mechanism of action of this family are summarized in this review.

Key words

APOBEC1 AID APOBEC3 Cytidine deaminase RNA/DNA editing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carter CW Jr. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie. 1995;77:92–98.CrossRefPubMedGoogle Scholar
  2. 2.
    Betts L, Xiang S, Short SA, Wolfenden R, Carter CW Jr. Cytidine deaminase: the 2.3 Å crystal structure of an enzyme: transition-state analog complex. J Mol Biol. 1994;235:635–656.CrossRefPubMedGoogle Scholar
  3. 3.
    Wilson DK, Rudolph FB, Quiocho FA. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science. 1991;252:1278–1284.CrossRefPubMedGoogle Scholar
  4. 4.
    Teng B, Burant CF, Davidson NO. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science. 1993;260:1816–1819.CrossRefPubMedGoogle Scholar
  5. 5.
    Scott J, Navaratnam N, Bhattacharya S, Morrison JR. The apolipoprotein B messenger RNA editing enzyme. Curr Opin Lipidol. 1994;5:87–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Navaratnam N, Morrison JR, Bhattacharya S, et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem. 1993;268:20709–20712.PubMedGoogle Scholar
  7. 7.
    Jarmuz A, Chester A, Bayliss J, et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 2002;79:285–296.CrossRefPubMedGoogle Scholar
  8. 8.
    Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470–18476.CrossRefPubMedGoogle Scholar
  9. 9.
    Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle. 2005;4:1281–1285.CrossRefPubMedGoogle Scholar
  10. 10.
    Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol. 2005;22:367–377.CrossRefPubMedGoogle Scholar
  11. 11.
    Saunders HL, Magor BG. Cloning and expression of the AID gene in the channel catfish. Dev Comp Immunol. 2004;28:657–663.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao Y, Pan-Hammarstrom Q, Zhao Z, Hammarstrom L. Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev Comp Immunol. 2005;29:61–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay. Cell. 1999;96:307–310.CrossRefPubMedGoogle Scholar
  14. 14.
    Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 1987;50:831–840.CrossRefPubMedGoogle Scholar
  15. 15.
    Chang CN, Doong SL, Zhou JH, et al. Deoxycytidine deaminase-resistant stereoisomer is the active form of (+/-)-2′,3′-dideoxy-3′- thiacytidine in the inhibition of hepatitis B virus replication. J Biol Chem. 1992;267:13938–13942.PubMedGoogle Scholar
  16. 16.
    Mehta A, Kinter MT, Sherman NE, Driscoll DM. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol Cell Biol. 2000;20:1846–1854.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chester A, Scott J, Anant S, Navaratnam N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim Biophys Acta. 2000;1494:1–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Maris C, Masse J, Chester A, Navaratnam N, Allain FH. NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor. RNA. 2005;11:173–186.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chester A, Somasekaram A, Tzimina M, et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 2003;22:3971–3982.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Morrison JR, Paszty C, Stevens ME, et al. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc Natl Acad Sci U S A. 1996;93:7154–7159.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Teng B, Blumenthal S, Forte T, et al. Adenovirus-mediated gene transfer of rat apolipoprotein B mRNA-editing protein in mice virtually eliminates apolipoprotein B-100 and normal low density lipoprotein production. J Biol Chem. 1994;269:29395–29404.PubMedGoogle Scholar
  22. 22.
    Hughes SD, Rouy D, Navaratnam N, Scott J, Rubin EM. Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein(a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum Gene Ther. 1996;7:39–49.CrossRefPubMedGoogle Scholar
  23. 23.
    Yamanaka S, Poksay KS, Driscoll DM, Innerarity TL. Hyperediting of multiple cytidines of apolipoprotein B mRNA by APOBEC-1 requires auxiliary protein(s) but not a mooring sequence motif. J Biol Chem. 1996;271:11506–11510.CrossRefPubMedGoogle Scholar
  24. 24.
    Anant S, Davidson NO. An AU-rich sequence element (UUUN[A/U]U) downstream of the edited C in apolipoprotein B mRNA is a high-affinity binding site for Apobec-1: binding of Apobec-1 to this motif in the 3′ untranslated region of c-myc increases mRNA stability. Mol Cell Biol. 2000;20:1982–1992.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553–563.CrossRefPubMedGoogle Scholar
  26. 26.
    Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–575.CrossRefPubMedGoogle Scholar
  27. 27.
    Arakawa H, Hauschild J, Buerstedde JM. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science. 2002;295:1301–1306.CrossRefPubMedGoogle Scholar
  28. 28.
    Petersen-Mahrt SK, Harris RS, Neuberger MS. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 2002;418:99–103.CrossRefPubMedGoogle Scholar
  29. 29.
    Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK. Immunity through DNA deamination. Trends Biochem Sci. 2003;28:305–312.CrossRefPubMedGoogle Scholar
  30. 30.
    Honjo T, Muramatsu M, Fagarasan S. AID: how does it aid antibody diversity? Immunity. 2004;20:659–668.CrossRefPubMedGoogle Scholar
  31. 31.
    Stavnezer J, Schrader CE. Mismatch repair converts AID-instigated nicks to double-strand breaks for antibody class-switch recombination. Trends Genet. 2006;22:23–28.CrossRefPubMedGoogle Scholar
  32. 32.
    Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature. 2004;430:992–998.CrossRefPubMedGoogle Scholar
  33. 33.
    Pham P, Bransteitter R, Petruska J, Goodman MF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature. 2003;424:103–107.CrossRefPubMedGoogle Scholar
  34. 34.
    Reynaud CA, Aoufouchi S, Faili A, Weill JC. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. 2003;4:631–638.CrossRefPubMedGoogle Scholar
  35. 35.
    Rada C, Jarvis JM, Milstein C. AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization. Proc Natl Acad Sci U S A. 2002;99:7003–7008.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ito S, Nagaoka H, Shinkura R, et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A. 2004;101:1975–1980.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell. 2003;12:501–508.CrossRefPubMedGoogle Scholar
  38. 38.
    Ta VT, Nagaoka H, Catalan N, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol. 2003;4:843–848.CrossRefPubMedGoogle Scholar
  39. 39.
    Basu U, Chaudhuri J, Alpert C, et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature. 2005;438:508–511.CrossRefPubMedGoogle Scholar
  40. 40.
    Pasqualucci L, Kitaura Y, Gu H, Dalla-Favera R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc Natl Acad Sci U S A. 2006;103:395–400.CrossRefPubMedGoogle Scholar
  41. 41.
    Okazaki IM, Hiai H, Kakazu N, et al. Constitutive expression of AID leads to tumorigenesis. J Exp Med. 2003;197:1173–1181.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mikl MC, Watt IN, Lu M, et al. Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol. 2005;25:7270–7277.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wedekind JE, Dance GS, Sowden MP, Smith HC. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 2003;19:207–216.CrossRefPubMedGoogle Scholar
  44. 44.
    Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol. 2004;14:1392–1396.CrossRefPubMedGoogle Scholar
  45. 45.
    Liddament MT, Brown WL, Schumacher AJ, Harris RS. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol. 2004;14:1385–1391.CrossRefPubMedGoogle Scholar
  46. 46.
    Yu Q, Chen D, Konig R, Mariani R, Unutmaz D, Landau NR. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem. 2004;279:53379–53386.CrossRefPubMedGoogle Scholar
  47. 47.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003;424:99–103.CrossRefPubMedGoogle Scholar
  48. 48.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–650.CrossRefPubMedGoogle Scholar
  49. 49.
    Harris RS, Liddament MT. Retroviral restriction by APOBEC proteins. Nat Rev Immunol. 2004;4:868–877.CrossRefPubMedGoogle Scholar
  50. 50.
    Petersen-Mahrt SK, Neuberger MS. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem. 2003;278:19583–19586.CrossRefPubMedGoogle Scholar
  51. 51.
    Schrofelbauer B, Chen D, Landau NR. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A. 2004;101:3927–3932.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bishop KN, Holmes RK, Sheehy AM, Malim MH. APOBEC-mediated editing of viral RNA. Science. 2004;305:645.CrossRefPubMedGoogle Scholar
  53. 53.
    Wiegand HL, Doehle BP, Bogerd HP, Cullen BR. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 2004;23:2451–2458.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol. 2004;78:6073–6076.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science. 2004;303:1829.CrossRefPubMedGoogle Scholar
  56. 56.
    Yu Q, Konig R, Pillai S, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004;11:435–442.CrossRefPubMedGoogle Scholar
  57. 57.
    Gunther S, Sommer G, Plikat U, et al. Naturally occurring hepatitis B virus genomes bearing the hallmarks of retroviral G→A hypermutation. Virology. 1997;235:104–108.CrossRefPubMedGoogle Scholar
  58. 58.
    Rosler C, Kock J, Kann M, et al. APOBEC-mediated interference with hepadnavirus production. Hepatology. 2005;42:301–309.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  1. 1.MRC Clinical Sciences Centre, Faculty of Medicine, Hammersmith CampusImperial CollegeLondonUK

Personalised recommendations