International Journal of Hematology

, Volume 83, Issue 4, pp 294–300 | Cite as

The Second Generation of BCR-ABL Tyrosine Kinase Inhibitors

Progress in Hematology

Abstract

Imatinib was developed as the first molecularly targeted therapy to specifically inhibit the BCR-ABL kinase in Philadelphia chromosome (Ph)-positive chronic myeloid leukemia (CML). Because of the excellent hematologic and cytogenetic responses, imatinib has moved toward first-line treatment for newly diagnosed CML. However, the emergence of resistance to imatinib remains a major problem in the treatment of Ph-positive leukemia. Several mechanisms of imatinib resistance have been identified, including BCR-ABL gene amplification that leads to overexpression of the BCR-ABL protein, point mutations in the BCR-ABL kinase domain that interfere with imatinib binding, and point mutations outside of the kinase domain that allosterically inhibit imatinib binding to BCR-ABL.The need for alternative or additional treatment for imatinib-resistant BCR-ABL-positive leukemia has guided the way to the design of a second generation of targeted therapies, which has resulted mainly in the development of novel small-molecule inhibitors such as AMN107, dasatinib, NS-187, and ON012380. The major goal of these efforts is to create new compounds that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. In this review, we discuss the next generation of BCR-ABL kinase inhibitors for overcoming imatinib resistance.

Key words

BCR-ABL Tyrosine kinase inhibitor SRC Resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–566.CrossRefPubMedGoogle Scholar
  2. 2.
    Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–1037.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.CrossRefPubMedGoogle Scholar
  4. 4.
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.CrossRefPubMedGoogle Scholar
  5. 5.
    Talpaz M, Silver RT, Druker BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002;99:1928–1937.CrossRefGoogle Scholar
  6. 6.
    Hughes T, Branford S. Molecular monitoring of chronic myeloid leukemia. Semin Hematol. 2003;40:62–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Hughes TP, Kaeda J, Bransford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349:1423–1432.CrossRefPubMedGoogle Scholar
  8. 8.
    Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2:117–125.CrossRefPubMedGoogle Scholar
  9. 9.
    Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16:2190–2196.CrossRefPubMedGoogle Scholar
  10. 10.
    Corbin AS, La Rosee P, Stroffrengen EP, Druker BJ, Deininger MW. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood. 2003;101:4611–4614.CrossRefPubMedGoogle Scholar
  11. 11.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science. 2000;289:1938–1942.CrossRefPubMedGoogle Scholar
  12. 12.
    Gorre ME, Sawyers CL. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr Opin Hematol. 2002;9:303–307.CrossRefPubMedGoogle Scholar
  13. 13.
    Roumiantsev S, Shah NP, Gorre ME, et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci U S A. 2002;99:10700–10705.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene. 2003;22:7389–7395.CrossRefPubMedGoogle Scholar
  15. 15.
    Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyro-sine kinase inhibitor STI571 in BCR/ABL-transformed hemato-poietic cell lines. Blood. 2000;95:3498–3505.PubMedGoogle Scholar
  16. 16.
    Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–1079.PubMedGoogle Scholar
  17. 17.
    Tipping AJ, Mahon FX, Lagarde V, Goldman JM, Melo JV. Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells. Blood. 2001;98:3864–3867.CrossRefPubMedGoogle Scholar
  18. 18.
    Sirulink A, Silver RT, Najfeld V. Marked ploidy and BCR-ABL gene amplification in vivo in a patient treated with STI571. Leukemia. 2001;15:1795–1797.CrossRefPubMedGoogle Scholar
  19. 19.
    Campbell LJ, Patsouris C, Rayeroux KC, Somana K, Januszewicz EH, Szer J. BCR/ABL amplification in chronic myelocytic leukemia blast crisis following imatinib mesylate administration. Cancer Genet Cytogenet. 2002;139:30–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Morel F, Bris MJ, Herry A, et al. Double minutes containing amplified bcr-abl fusion gene in a case of chronic myeloid leukemia treated by imatinib. Eur J Haematol. 2003;70:235–239.CrossRefPubMedGoogle Scholar
  21. 21.
    Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LY N kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003;101:690–698.CrossRefPubMedGoogle Scholar
  22. 22.
    Dai Y, Rahmani M, Corey SJ, Dent P, Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem. 2004;279:34227–34239.CrossRefPubMedGoogle Scholar
  23. 23.
    Donato NJ, Wu JY, Stapley J, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res. 2004;64:672–677.CrossRefPubMedGoogle Scholar
  24. 24.
    Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–325.CrossRefPubMedGoogle Scholar
  25. 25.
    Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem. 2004;4:285–299.CrossRefPubMedGoogle Scholar
  26. 26.
    Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–141.CrossRefPubMedGoogle Scholar
  27. 27.
    Manley PW, Cowan-Jacob SW, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochem Biophys Acta. 2005;1754:3–13.PubMedGoogle Scholar
  28. 28.
    Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of the Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res. 2005;11:4941–4947.CrossRefPubMedGoogle Scholar
  29. 29.
    Martinelli G, Martelli AM, Grafone T, et al. A new ABL kinase inhibitor (AMN107) has in vitro activity on CML Ph+ blast cells resistant to imatinib [abstract]. Blood. 2004;104:255b. Abstract 4687.Google Scholar
  30. 30.
    Giles F, Kantarjian H, Wassmann B, et al. A phase I/II study of AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, on a continuous daily dosing schedule in adult patients (pts) with imatinib-resistant advanced phase chronic myeloid leukemia (CML) or relapsed/refractory Philadelphia chromosome (Ph+) acute lymphocytic leukemia (ALL) [abstract]. Blood. 2004;104:10a. Abstract 22.Google Scholar
  31. 31.
    Kantarjian H, Ottmann O, Cortes J, et al. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has significant activity in imatinib-resistant bcr-abl positive chronic myeloid leukemia (CML) [abstract]. J Clin Oncol. 2005;23:195s. Abstract 3014.CrossRefGoogle Scholar
  32. 32.
    Ottmann O, Giles F, Wassmann B, et al. Activity of AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, in imatinib-resistant bcr-abl positive lymphoid malignancies [abstract]. J Clin Oncol. 2005;23:195s. Abstract 3015.CrossRefGoogle Scholar
  33. 33.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.CrossRefPubMedGoogle Scholar
  34. 34.
    Tokarski J, Newitt J, Lee FY, et al. The crystal structure of Abl kinase with BMS-354825, a dual SRC/ABL kinase inhibitor [abstract]. Blood. 2004;104:160a. Abstract 553.Google Scholar
  35. 35.
    Gambacorti-Passerini C, Gasser M, Ahmed S, Assouline S, Scapozza L. Abl inhibitor BMS354825 binding mode in Abelson kinase revealed by molecular docking studies. Leukemia. 2005;19:1267–1269.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee FY, Lombardo L, Camuso A, et al. BMS-354825 potently inhibits multiple selected oncogenic tyrosine kinases and possesses broad spectrum antitumor activities in vitro and in vivo [abstract]. Proc Am Assoc Cancer Res. 2005;46:159.Google Scholar
  37. 37.
    Sawyers CL, Shah NP, Kantarjian HM, et al. Hematologic and cyto-genetic responses in imatinib-resistant chronic phase chronic myeloid leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalating study [abstract]. Blood. 2004;104:4a. Abstract 1.CrossRefGoogle Scholar
  38. 38.
    Talpaz M, Kantarjian HM, Shah NP, et al. Hematologic and cyto-genetic responses in imatinib-resistant accelerated and blast phase chronic myeloid leukemia (CML) patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study [abstract]. Blood. 2004;104:10a. Abstract 20.Google Scholar
  39. 39.
    Talpaz M, Kantarjian HM, Paquette R, et al. A phase I study of BMS-354825 in patients with imatinib-resistant and intolerant chronic phase chronic myeloid leukemia (CML): results from CA180002 [abstract]. J Clin Oncol. 2005;23:564s. Abstract 6519.CrossRefGoogle Scholar
  40. 40.
    Sawyers CL, Shah NP, Kantarjian HM, et al. A phase I study of BMS-354825 in patients with imatinib-resistant and intolerant accelerated and blast phase chronic myeloid leukemia (CML): results from CA180002 [abstract]. J Clin Oncol. 2005;23:565s. Abstract 6520.CrossRefGoogle Scholar
  41. 41.
    Shah N, Sawyers CL, Kantarjian H, et al. Correlation of clinical response to BMS-354825 with BCR-ABL mutation status in imatinib-resistant patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-associated acute lymphoblastic leukemia (Ph+ ALL) [abstract]. J Clin Oncol. 2005;23:565s. Abstract 6521.CrossRefGoogle Scholar
  42. 42.
    Gao H, Talpaz M, Lee BN, et al. BMS-354825 induced complete hematologic remission in chronic phase CML patients without affecting T-cell cytokine production [abstract]. J Clin Oncol. 2005;23:589s. Abstract 6619.CrossRefGoogle Scholar
  43. 43.
    Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36:453–461.CrossRefPubMedGoogle Scholar
  44. 44.
    Kimura S, Naito H, Segawa H, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–3954.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu Y, Bishop A, Witucki L, et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol. 1999;6:671–678.CrossRefPubMedGoogle Scholar
  46. 46.
    Warmuth M, Simon N, Mitina O, et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood. 2003;101:664–672.CrossRefPubMedGoogle Scholar
  47. 47.
    Hanke JH, Gardner JP, Dow RL, et al. Discovery of a novel, potent, Src family-selective tyrosine kinase inhibitor: study of Lck-and FynT-dependent T cell activation. J Biol Chem. 1996;271:695–701.CrossRefPubMedGoogle Scholar
  48. 48.
    Missbach M, Jeschke M, Feyen J, et al. A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone. 1999;24:437–449.CrossRefPubMedGoogle Scholar
  49. 49.
    Boschelli DH,Ye F,Wang YD, et al. Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem. 2001;44:3965–3977.CrossRefPubMedGoogle Scholar
  50. 50.
    Golas JM, Arndt K, Etienne C, et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 2003;63:375–381.PubMedGoogle Scholar
  51. 51.
    O’Hare T, Pollock R, Stoffregen EP, et al. Inhibition of wild-type and mutant Bcr-Abl by AP23464, potent ATP-based oncogenic protein kinase inhibitor: implications for CML. Blood. 2004;104:2532–2539.CrossRefPubMedGoogle Scholar
  52. 52.
    Hamby JM, Connolly CJ, Schroeder MC, et al. Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J Med Chem. 1997;40:2296–2303.CrossRefPubMedGoogle Scholar
  53. 53.
    Boschelli DH,Wu Z, Klutchko SR, et al. Synthesis and tyrosine kinase inhibitory activity of a series of 2-amino-8H-pyrido[2,3-d]pyrimidines: identification of potent, selective platelet-derived growth factor receptor tyrosine kinase inhibitors. J Med Chem. 1998;41:4365–4377.CrossRefPubMedGoogle Scholar
  54. 54.
    Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW. Biochemical and cellular effects of c-Src kinase-selec-tive pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol. 2000;60:885–898.CrossRefPubMedGoogle Scholar
  55. 55.
    Dorsey JF, Jove R, Kraker AJ, Wu J. The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res. 2000;60:3127–3131.PubMedGoogle Scholar
  56. 56.
    Huang M, Dorsey JF, Epling-Burnette PK, et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene. 2002;21:8804–8816.CrossRefPubMedGoogle Scholar
  57. 57.
    Wisniewski D, Lambek CL, Liu C, et al. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res. 2002;62:4244–4255.PubMedGoogle Scholar
  58. 58.
    Wolff NC, Veach DR, Tong WP, Bornmann WG, Clarkson B, Ilaria RL {jrJr.} PD166326, a novel tyrosine kinase inhibitor, has greater antileukemic activity than imatinib mesylate in a murine model of chronic myeloid leukemia. Blood. 2005;105:3995–4003.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci U S A. 2005;102:1992–1997.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2006

Authors and Affiliations

  1. 1.First Department of Internal MedicinTokyo Medical UniversityTokyoJapan

Personalised recommendations